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Elliptic curves
Let E : y2 = x3 + ax + b be an elliptic curve. . .
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Elliptic curves

C/Λ

ω1

ω2

ab

a + b

a + b

Let
ω1, ω2 ∈ C be
linearly
independent
complex
numbers. Set

Λ = ω1Z⊕ ω2Z

C/Λ is an
elliptic curve.
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Multiplication

a

[3]a

[3]a
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Torsion subgroups

a

b

The `-torsion
subgroup is made
up by the points(

iω1

`
,
jω2

`

)
It is a group of
rank two

E [`] = 〈a, b〉
' (Z/`Z)2
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Isogenies

a

b

p

p

p

Let a ∈ C/Λ1 be
an `-torsion point,
and let

Λ2 = aZ⊕ Λ1

Then Λ1 ⊂ Λ2 and
we define a degree
` cover

φ : C/Λ1 → C/Λ2

φ is a morphism of
complex Lie
groups and is
called an isogeny.
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Isogenies

a

b

p

p

p

Taking a point b
not in the kernel
of φ, we obtain a
new degree ` cover

φ̂ : C/Λ2 → C/Λ3

The composition
φ̂ ◦ φ has degree
`2 and is
homothetic to the
multiplication by `
map.
φ̂ is called the
dual isogeny of φ.
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Isogenies over arbitrary fields
Isogenies are just the right notion of morphism for elliptic curves

Surjective group morphisms.
Algebraic maps (i.e., defined by polynomials).

(Separable) isogenies ⇔ finite subgroups:

0→ H → E
φ→ E ′ → 0

The kernel H determines the image curve E ′ up to isomorphism

E/H
def
= E ′.

Isogeny degree
Neither of these definitions is quite correct, but they nearly are:

The degree of φ is the cardinality of ker φ.
(Bisson) the degree of φ is the time needed to compute it.
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The computational point of view
In practice: an isogeny φ is just a rational fraction (or maybe two)

N(x)

D(x)
=

xn + · · ·+ n1x + n0

xn−1 + · · ·+ d1x + d0
∈ k(x), with n = deg φ,

and D(x) vanishes on ker φ.

The explicit isogeny problem
Input: A description of the isogeny (e.g, its kernel).

Output: The curve E/H and the rational fraction N/D.
Lower bound: Ω(n).

The isogeny evaluation problem
Input: A description of the isogeny φ, a point P ∈ E (k).

Output: The curve E/H and φ(P).
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Isogeny graphs

We want to study the graph of elliptic curves
with isogenies up to isomorphism. We say two
isogenies φ, φ′ are isomorphic if:

E E ′

E ′

φ

φ′

˜
Example: Finite field, ordinary case, graph of isogenies of degree 3.
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an isogeny cycle in the Alps



Structure of the graph1

Theorem (Serre-Tate)
Two curves are isogenous over a finite field k if and only if they have the
same number of points on k .

The graph of isogenies of prime degree ` 6= p

Ordinary case
Nodes can have degree 0, 1, 2 or `+ 1.
Connected components form so called volcanoes.

Supersingular case
The graph is `+ 1-regular.
There is a unique connected component made of all supersingular
curves with the same number of points.

1Kohel 1996; Fouquet and Morain 2002.
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Expander graphs
Let G be a finite undirected k-regular graph.

k is the trivial eigenvalue of the adjacency matrix of G .
G is called an expander if all non-trivial eigenvalues satisfy
|λ| ≤ (1− δ)k .
It is called a Ramanujan graph if |λ| ≤ 2

√
k − 1. This is optimal.

In practice, in an expander graph random walks of length O(1
δ log|G |) land

anywhere in the graph with probability distribution close to uniform.

Isogeny graphs and expansion

The graph of ordinary isogenies of degree less than (log 4q)B is an
expander if B > 2.a

The graph of supersingular isogenies of prime degree ` 6= p is
Ramanujan.b

aJao, Miller, and Venkatesan 2009.
bPizer 1990, 1998.
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Isogeny walks and cryptanalysis3

Recall: Having a weak DLP is not isogeny invariant.

E E ′weak curve strong curve

E ′′

Fourth root attacks
Start two random walks from the two curves and wait for a collision.
Over Fq, the average size of an isogeny class is h∆ ∼

√
q.

A collision is expected after O(
√
h∆) = O(q

1
4 ) steps.

Note: Can be used to build trapdoor systems2.

2Teske 2006.
3Steven D. Galbraith 1999; Steven D. Galbraith, Hess, and Smart 2002; Charles,

K. E. Lauter, and Goren 2009; Bisson and Sutherland 2011.
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Random walks and hash functions
Any expander graph gives rise to a hash function.

v
0

1
1

0
0

1
1

0
0

1
1

0

v ′ H(010101) = v ′

Fix a starting vertex v ;
The value to be hashed determines a random path to v ′;
v ′ is the hash.

Provably secure hash functions
Use the Ramanujan graph of supersingular 2-isogenies;a

Collision resistance = hardness of finding cycles in the graph;
Preimage resistance = hardness of finding a path from v to v ′.

aCharles, K. E. Lauter, and Goren 2009.
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The endomorphism ring

An endomorphism is an isogeny φ : E → E .
The endomorphisms form a ring denoted Endk(E ).

Theorem
Q⊗ Endk̄(E ) is isomorphic to one of the following
ordinary case: Q (only possible if char k = 0),
ordinary case (complex multiplication): an imaginary quadratic field,
supersingular case: a quaternion algebra (only possible if char k 6= 0).

Corollary
End(E ) is isomorphic to an order O ⊂ Q⊗ End(E ).

Luca De Feo (UVSQ & INRIA) Isogeny-based cryptography EPFL, Sep 29, 2016 15 / 44



Isogenies and endomorphisms
Theorem (Serre-Tate)
Two elliptic curves E ,E ′ are isogenous if and only if

Q⊗ End(E ) ' Q⊗ End(E ′).

Example: Finite field, ordinary case, 3-isogeny graph.

End(E )

bigger node = bigger End(E )
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The ordinary case

Let End(E ) = O ⊂ Q(
√
d) be the endomorphism ring of E . Define

I(O), the group of invertible fractional ideals,
P(O), the group of principal ideals,

Definition (The class group)
The class group of O is

Cl(O) = I(O)/P(O).

It is a finite abelian group.
It arises as the Galois group of an abelian extension of Q(

√
d).

Isogeny (classes) = ideal (classes): The class group acts faithfully and
transitively on the isogeny graph.

Luca De Feo (UVSQ & INRIA) Isogeny-based cryptography EPFL, Sep 29, 2016 17 / 44



DH-like key exchange based on (semi)-group actions

Let G be an abelian group acting (faithfully and transitively) on a set X .

x0

g · x0 h · x0

gh · x0 = hg · x0

g h

h g
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Hidden Subgroup Problem

Let G be a group, X a set and f : G → X . We say that f hides a subgroup
H ⊂ G if

f (g1) = f (g2)⇔ g1H = g2H.

Definition (Hidden Subgroup Problem (HSP))
Input: G ,X as above, an oracle computing f .

Output: generators of H.

Theorem (Schorr, Josza)
If G is abelian, then

HSP ∈ polyBQP(log |G |),
using poly(log |G |) queries to the oracle.
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Post-Quantum cryptography

Known reductions
Discrete Log on G of size p → HSP on (Z/pZ)2,
hence DH, ECDH, etc. are broken by quantum computers.
Semigroup-DH on G → HSP on the dihedral group G n Z/2Z.

Quantum algorithms for dihedral HSP

Kuperberga: 2O(
√

log |G |) quantum time, space and query complexity.
Regevb: L|G |(

1
2 ,
√
2) quantum time and query complexity,

poly(log(|G |) quantum space.
aKuperberg 2005.
bRegev 2004.

Remark (Regev): certain lattice-based cryptosystems are also vulnerable to
the HSP for dihedral groups.
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DH using class groups4
Public data:

E/Fp ordinary elliptic curve with complex multiplication field K,

primes `1,`2 not dividing Disc(E ) and s.t.
(
DK
`i

)
= 1.

A direction on the isogeny graph (i.e. an element of the class group).
Secret data: Random walks a, b in the `i -isogeny graphs.

E

a ∗ E b ∗ E

ab ∗ E = ba ∗ E

`a1
1 `

a2
2 = N (a) N (b) = `b1

1 `
b2
2

4Rostovtsev and Stolbunov 2006.
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R&S key exchange

`1-isogenies

`2-isogenies
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R&S key exchange

Key generation: compose small degree isogenies
polynomial in the lenght of the random walk.

Attack: find an isogeny between two curves
polynomial in the degree, exponential in the length.

Quantum5: HShP + isogeny evaluation
subexponential in the length of the walk.

5Childs, Jao, and Soukharev 2010.
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Supersingular curves

Q⊗ End(E ) is a quaternion algebra (non-commutative)

Facts
Every supersingular curve is defined over Fp2 .
E (Fp2) ' (Z/(p + 1)Z)2 (up to twist, and overly simplifying!).

There are g(X0(p)) +1 ∼ p+1
12 supersingular curves up to isomorphism.

For every maximal order type of the quaternion algebra Qp,∞ there are
1 or 2 curves over Fp2 having endomorphism ring isomorphic to it.
There is a unique isogeny class of supersingular curves over F̄p (there
are two over any finite field).
The graph of `-isogenies is `+ 1-regular.
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R&S key exchange with supersingular curves

Good news: there is no action of a commutative class group.
Bad news: there is no action of a commutative class group.

However: left ideals of End(E ) still act on the isogeny graph:

E E ′

E ′′ E ′′′

a

ab

b ba

The action factors through the right-isomorphism equivalence of ideals.
Ideal classes form a groupoid (in other words, an undirected
multigraph. . . ).
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From ideals back to isogenies
In practice, computations with ideals are hard. We fix, instead:

Small primes `A, `B ;
A large prime p such that p + 1 = `eAA `

eB
B ;

A supersingular curve E over Fp2 , such that

E ' (Z/(p + 1)Z)2 = (Z/`eAA Z)2 ⊕ (Z/`eBB Z)2,

We use isogenies of degrees `eAA and `eBB with cyclic rational kernels;
The diagram below can be constructed in time poly(eA + eB).

ker φ = 〈P〉 ⊂ E [`eAA ]

kerψ = 〈Q〉 ⊂ E [`eBB ]

ker φ′ = 〈ψ(P)〉

kerψ′ = 〈φ(Q)〉

E E/〈P〉

E/〈Q〉 E/〈P ,Q〉

φ

φ′

ψ ψ′
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Our proposal: SIDH6

Public data:
Prime p such that
p + 1 = `aA`

b
B ;

Supersingular curve
E ' (Z/(p + 1)Z)2;

E [`aA] = 〈PA,QA〉;

E [`bB ] = 〈PB ,QB〉.
Secret data:

RA = mAPA + nAQA,

RB = mBPB + nBQB ,

E

E/〈RA〉

φ(PB)

φ(QB)

E/〈RB〉

ψ(PA)

ψ(QA)

E/〈RA〉
φ(RB) ' E/〈RA,RB〉 ' E/〈RB〉

ψ(RA)

φ ψ

ψ′ φ′

φ(RB) ψ(RA)

6Jao and De Feo 2011.
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Other protocols based on SIDH

Non-interactive protocols
El-Gamal encryption.

Interactive protocols
Zero-knowledge proofs of identitya,
Undeniable signaturesb,
Strong designated verifier signaturesc,
Authenticated encryptiond.

aDe Feo, Jao, and Plût 2014.
bJao and Soukharev 2014.
cSun, Tian, and Wang 2012.
dSoukharev, Jao, and Seshadri 2016.

Missing: Classical signatures, . . .
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Generic attacks
Problem: Given E ,E ′, isogenous of degree `n, find φ : E → E ′.

E

E/〈P0〉

Ei/〈Pi〉

E/〈P`n/2〉

...

...

E ′

`n/2

`n/2

With high probability φ is the unique collision (or claw).
A quantum claw finding7 algorithm solves the problem in O(`n/3).

7Tani 2009.
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Other attacks

Ephemeral key recovery (total break)
Given E0 and a public curve E0/〈R〉, find the kernel of the secret isogeny:
Subexponential Lp(1/2,

√
3/2) when both curves are defined over Fp.a

Polynomial isomorphic problem on quaternion algebras.b

Equivalent to computing the endomorphism rings of both E0 and
E0/〈RA〉.c

aBiasse, Jao, and Sankar 2014.
bKohel, K. Lauter, Petit, and Tignol 2014.
cSteven D Galbraith, Petit, Shani, and Ti 2016.
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Other attacks

Other security models
Active attack against long term keys, learns the full key with (close to)

optimal number of oracle queries. Countermeasures are
relatively expensive.a

Side channel Constant-time implementation available.b

Attack on partially leaked keys.a

aSteven D Galbraith, Petit, Shani, and Ti 2016.
bCostello, Longa, and Naehrig 2016.
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Recommended parameters
For efficiency chose p such that p + 1 = 2a3b.
For classical n-bit security, choose 2a ∼ 3b ∼ 22n, hence p ∼ 24n.
For quantum n-bit security, choose 2a ∼ 3b ∼ 23n, hence p ∼ 26n.

Practical optimizations:

Optimize arithmetic for Fp.ab

−1 is a quadratic non-residue: Fp2 ' Fp[X ]/(X 2 + 1).
E (or its twist) has a 4-torsion point: use Montgomery form.
Avoid inversions by using projective curve equations.a

Use j = 0 as starting curve.a

Fastest implementationa: 100Mcycles (Intel Haswell) @128bits quantum
security level, 4512bits public key size.

aCostello, Longa, and Naehrig 2016.
bKarmakar, Roy, Vercauteren, and Verbauwhede 2016.
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Evaluating φ : E → E/〈R〉 efficiently
ord(R) = `a and φ = φ0 ◦ φ1 ◦ · · · ◦ φa−1, each of degree `

R

R1

R2

R3

R4

R5

[`1]R

[`2]R

[`3]R

[`4]R

[`5]R

φ0

φ0

φ0

φ0

φ0

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ3

φ3 φ4

[`]

[`]

[`]

[`]

[`]

[`4]R1 [`3]R2 [`2]R3 [`1]R4

•

• •

• • •

• • • •

• • • • •

• • • • • •

For each i , one needs to compute [`e−i ]Ri in order to compute φi .
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What’s the best strategy?

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

Figure: The seven well formed strategies for e = 4.

Right edges are `-isogeny evaluation;
Left edges are multiplications by ` (about twice as expensive);

The best strategy can be precomputed offline and hardcoded in an
embedded system.

A package to explore strategies:
https://github.com/sidh-crypto/sidh-optimizer.
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