SeaSign: Compact isogeny signatures from class group actions

Luca De Feo¹, Steven D. Galbraith²

¹Université Paris Saclay – UVSQ, France ²University of Auckland, New Zeland

May 23, 2019, Eurocrypt, Darmstadt

Slides online at https://defeo.lu/docet

Post-quantum isogeny primitives

SIDH (Jao, De Feo 2011)

- Pronounce S-I-D-H;
- Based on random isogeny walks in the full supersingular graph over \mathbb{F}_{p^2} ;
- Basis for the NIST KEM candidate SIKE;
- Better asymptotic quantum security;
- Short keys, slow.

CSIDH (Couveignes 1996; Rostovtsev Stolbunov 2006; Castryck, Lange, Martindale, Panny, Renes 2018)

- Pronounce Sea-Side;
- Based on random isogeny walks in the \mathbb{F}_p -restricted supersingular isogeny graph;
- Straightforward generalization of Diffie-Hellman;
- More "natural" security assumption;
- Shorter keys, slower.

Post-quantum isogeny primitives

SIDH (Jao, De Feo 2011)

- Pronounce S-I-D-H;
- Based on random isogeny walks in the full supersingular graph over \mathbb{F}_{p^2} ;
- Basis for the NIST KEM candidate SIKE;
- Better asymptotic quantum security;
- Short keys, slow.
- Crappy signatures (slow, large).
 Not this talk.

CSIDH (Couveignes 1996; Rostovtsev Stolbunov 2006; Castryck, Lange, Martindale, Panny, Renes 2018)

- Pronounce Sea-Side;
- Based on random isogeny walks in the \mathbb{F}_p -restricted supersingular isogeny graph;
- Straightforward generalization of Diffie-Hellman;
- More "natural" security assumption;
- Shorter keys, slower.

Post-quantum isogeny primitives

SIDH (Jao, De Feo 2011)

- Pronounce S-I-D-H;
- Based on random isogeny walks in the full supersingular graph over \mathbb{F}_{p^2} ;
- Basis for the NIST KEM candidate SIKE;
- Better asymptotic quantum security;
- Short keys, slow.
- Crappy signatures (slow, large).
 Not this talk.

CSIDH (Couveignes 1996; Rostovtsev Stolbunov 2006; Castryck, Lange, Martindale, Panny, Renes 2018)

- Pronounce Sea-Side;
- Based on random isogeny walks in the \mathbb{F}_p -restricted supersingular isogeny graph;
- Straightforward generalization of Diffie-Hellman;
- More "natural" security assumption;
- Shorter keys, slower.
- Also crappy signatures, but different!
 This talk.

• A set of supersingular elliptic curves over \mathbb{F}_p ;

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - ▶ degree 2,

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - ▶ degree 2, degree 3,

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - ▶ degree 2, degree 3, degree 5, ...

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - ▶ degree 2, degree 3, degree 5, ...
- Graph structure isomorphic to a Cayley graph;

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - ▶ degree 2, degree 3, degree 5, ...
- Graph structure isomorphic to a Cayley graph;
- Good algorithm to do random walks in the graph.

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - ▶ degree 2, degree 3, degree 5, ...
- Graph structure isomorphic to a Cayley graph;
- Good algorithm to do random walks in the graph.

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - degree 2, degree 3, degree 5, ...
- Graph structure isomorphic to a Cayley graph;
- Good algorithm to do random walks in the graph.

Key exchange:

• Alice picks secret $a = g_2^{a_2} g_3^{a_3} g_5^{a_5} \cdots$,

•

•

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators g ∈ G, e.g.:
 - degree 2, degree 3, degree 5, ...
- Graph structure isomorphic to a Cayley graph;
- Good algorithm to do random walks in the graph.

- Alice picks secret $a = g_2^{a_2} g_3^{a_3} g_5^{a_5} \cdots$,
- Bob picks secret $b = g_2^{b_2} g_3^{b_3} g_5^{b_5} \cdots$,

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - degree 2, degree 3, degree 5, ...
- Graph structure isomorphic to a Cayley graph;
- ullet Good algorithm to do random walks in the graph. E_Bullet

- Alice picks secret $a=g_2^{a_2}g_3^{a_3}g_5^{a_5}\cdots$,
- Bob picks secret $b = g_2^{b_2} g_3^{b_3} g_5^{b_5} \cdots$,
- They exchange $E_A = a * E_1$ and $E_B = b * E_1$,

- A set of supersingular elliptic curves over \mathbb{F}_p ;
- A group action by an abelian group *G*;
- Only efficient to evaluate the action of some small degree generators $g \in G$, e.g.:
 - ▶ degree 2, degree 3, degree 5, ...
- Graph structure isomorphic to a Cayley graph;
- Good algorithm to do random walks in the graph.

- Alice picks secret $a = g_2^{a_2} g_3^{a_3} g_5^{a_5} \cdots$,
- Bob picks secret $b = g_2^{b_2} g_3^{b_3} g_5^{b_5} \cdots$,
- They exchange $E_A = a * E_1$ and $E_B = b * E_1$,
- Shared secret is

$$E_{AB} = (ab) * E_1 = a * E_B = b * E_A.$$

• A key pair (s, g^s) ;

$$g \longrightarrow g$$

¹Kids, do not try this at home! Use Schnorr!

- A key pair (s, g^s) ;
- Commit to a random element g^r ;

¹Kids, do not try this at home! Use Schnorr!

- A key pair (s, g^s) ;
- Commit to a random element q^r ;
- Challenge with bit $b \in \{0, 1\}$;

¹Kids, do not try this at home! Use Schnorr!

- A key pair (s, g^s) ;
- Commit to a random element g^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;

¹Kids, do not try this at home! Use Schnorr!

- A key pair (s, g^s) ;
- Commit to a random element q^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;
- Verify that $g^c(g^s)^b = g^r$.

¹Kids, do not try this at home! Use Schnorr!

- A key pair (s, g^s) ;
- Commit to a random element g^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;
- Verify that $g^c(g^s)^b = g^r$.

Zero-knowledge

Does not leak because:

c is uniformly distributed and independent from s.

¹Kids, do not try this at home! Use Schnorr!

- A key pair (s, g^s) ;
- Commit to a random element q^r ;
- Challenge with bit $b \in \{0, 1\}$;
- Respond with $c = r b \cdot s \mod \#G$;
- Verify that $g^c(g^s)^b = g^r$.

Zero-knowledge

Does not leak because:

c is uniformly distributed and independent from *s*.

Unlike Schnorr, compatible with group action Diffie-Hellman.

¹Kids, do not try this at home! Use Schnorr!

The trouble with groups of unknown structure

In CSIDH secrets look like: $g^{\vec{s}} = g_2^{s_2} g_3^{s_3} g_5^{s_5} \cdots$

- the elements g_i are fixed,
- the secret is the exponent vector $\vec{s} = (s_2, s_3, \dots) \in [-B, B]^n$,
- secrets must be sampled in a box $[-B, B]^n$ "large enough"...

The trouble with groups of unknown structure

In CSIDH secrets look like: $g^{\vec{s}}=g_2^{s_2}g_3^{s_3}g_5^{s_5}\cdots$

- the elements g_i are fixed,
- the secret is the exponent vector $\vec{s} = (s_2, s_3, \dots) \in [-B, B]^n$,
- secrets must be sampled in a box $[-B, B]^n$ "large enough"...

The leakage

With \vec{s} , $\vec{r} \stackrel{\$}{\leftarrow} [-B, B]^n$, the distribution of $\vec{r} - \vec{s}$ depends on the long term secret \vec{s} !

The two fixes

Compute the group structure and stop whining

- Already suggested by Couveignes (1996) and Rostovtsev–Stolbunov (2006).
- Computationally intensive (subexponential parameter generation).
- Technically not post-quantum (rather, post-post-quantum).
- Done last week by Beullens, Kleinjung and Vercauteren: CSI-FiSh (eprint:2019/498).
- Decent parameters, e.g.: 263 bytes, 390 ms, @NIST-1.
- Not this work.

The two fixes

Compute the group structure and stop whining

- Already suggested by Couveignes (1996) and Rostovtsev–Stolbunov (2006).
- Computationally intensive (subexponential parameter generation).
- Technically not post-quantum (rather, post-post-quantum).
- Done last week by Beullens, Kleinjung and Vercauteren: CSI-FiSh (eprint:2019/498).
- Decent parameters, e.g.: 263 bytes, 390 ms, @NIST-1.
- Not this work.

Do like the lattice people

- Use Fiat-Shamir with aborts (Lyubashevsky 2009).
- Huge increase in signature size and time.
- Compromise signature size/time with public key size.
- This work.

Rejection sampling

- Sample long term secret \vec{s} in the usual box $[-B, B]^n$,
- Sample ephemeral \vec{r} in a larger box $[-(\delta+1)B, (\delta+1)B]^n$,
- Throw away $\vec{r} \vec{s}$ if it is out of the box $[-\delta B, \delta B]^n$.

Zero-knowledge

Theorem: $\vec{r} - \vec{s}$ is uniformly distributed in $[-\delta B, \delta B]^n$.

Problem: set δ so that rejection probability is low.

Performance

- For λ -bit security, protocol must be repeated λ times in parallel;
- $\delta = \lambda n$ for a rejection probability $\leq 1/3$;
- Signature size $\approx \lambda n$ coefficients $\in [-\delta B, \delta B]$;
- Sign/verify time linear in $\|\vec{r} \vec{s}\|_{\infty} \approx \lambda^2 n^2 B$.

CSIDH instantiation (NIST-1)

```
Parameters: \lambda = 128, n = 74, B = 5;
```

PK size: 64 B

SK size: 32 B

Signature: 20 KiB

Verify time: 10 hours

Sign time: 3× verify

- One key pair (\vec{s}, E_s) ;
- Challenge $b \in \{0, 1\}$;
- Reveal $\vec{r} b\vec{s}$;
- $\rightarrow \lambda$ iterations;

- One key pair (\vec{s}, E_s) ;
- Challenge $b \in \{0, 1\}$;
- Reveal $\vec{r} b\vec{s}$;
- $\rightarrow \lambda$ iterations;

Compromise: t-bit challenges

- $2^{\mathbf{t}}$ key pairs $(\vec{s_i}, E_i)$;
- Challenge $b \in \{0, 2^t\}$;
- Reveal $\vec{r} \vec{s_b}$;
- $\rightarrow \lambda/t$ iterations;

- One key pair (\vec{s}, E_s) ;
- Challenge $b \in \{0, 1\}$;
- Reveal $\vec{r} b\vec{s}$;
- $\rightarrow \lambda$ iterations;
- ightarrow Sample $r \stackrel{\$}{\leftarrow} [-\lambda nB, \lambda nB]$.

Compromise: t-bit challenges

- $2^{\mathbf{t}}$ key pairs $(\vec{s_i}, E_i)$;
- Challenge $b \in \{0, 2^t\}$;
- Reveal $\vec{r} \vec{s_h}$;
- $\rightarrow \lambda/t$ iterations;

- One key pair (\vec{s}, E_s) ;
- Challenge $b \in \{0, 1\}$;
- Reveal $\vec{r} b\vec{s}$;
- $\rightarrow \lambda$ iterations;
- ightarrow Sample $r \stackrel{\$}{\leftarrow} [-\lambda nB, \lambda nB]$.

Compromise: t-bit challenges

- $2^{\mathbf{t}}$ key pairs $(\vec{s_i}, E_i)$;
- Challenge $b \in \{0, 2^t\}$;
- Reveal $\vec{r} \vec{s_b}$;
- $\rightarrow \lambda/t$ iterations;
- \rightarrow Sample $r \stackrel{\$}{\leftarrow} [-\lambda nB/\mathbf{t}, \lambda nB/\mathbf{t}].$

Public key compression

Public key compression

• Construct Merkle tree on top of public keys, root is the new public key;

Public key compression

- Construct Merkle tree on top of public keys, root is the new public key;
- Include Merkle proof in the signature.

Performance

	$t=1$ bit challenges $% \left\{ $	t=16 bits challenges	PK compression
Sig size	20 KiB	978 B	3136 B
PK size	64 B	4 MiB	32 B
SK size	32 B	16 B	1 MiB
Est. keygen time	30 ms	30 mins	30 mins
Est. sign time	30 hours	6 mins	6 mins
Est. verify time	10 hours	2 mins	2 mins
Asymptotic sig size	$O(\lambda^2 \log(\lambda))$	$O(\lambda t \log(\lambda))$	$O(\lambda^2 t)$

Performance

	$t=1$ bit challenges $% \left\{ $	t=16 bits challenges	PK compression
Sig size	20 KiB	978 B	3136 B
PK size	64 B	4 MiB	32 B
SK size	32 B	16 B	1 MiB
Est. keygen time	30 ms	30 mins	30 mins
Est. sign time	30 hours	6 mins	6 mins
Est. verify time	10 hours	2 mins	2 mins
Asymptotic sig size	$O(\lambda^2 \log(\lambda))$	$O(\lambda t \log(\lambda))$	$O(\lambda^2 t)$

Recent speed/size compromises by Decru, Panny and Vercauteren

mooning production and production an					
Sig size	36 KiB	2 KiB	_		
Est. sign time	30 mins	80 s	_		
Est. verify time	20 mins	20 s	_		

Security proofs

Standard proofs using forking lemma

- ROM only, non tight;
- Secret key space $\#[-B,B]^n\gg\sqrt{\#\mathbb{F}_p}$ to (heuristically) cover all the isogeny graph, but:
 - ▶ Public keys not uniformly sampled ⇒ problematic random-self reduction;
 - \triangleright Only managed to reduce to a one-out-of- 2^{2t} isogeny walk problem.

Security proofs

Standard proofs using forking lemma

- ROM only, non tight;
- Secret key space $\#[-B,B]^n\gg\sqrt{\#\mathbb{F}_p}$ to (heuristically) cover all the isogeny graph, but:
 - Public keys not uniformly sampled ⇒ problematic random-self reduction;
 - \triangleright Only managed to reduce to a one-out-of- 2^{2t} isogeny walk problem.

Alternative proofs based on lossy keys (Kiltz, Lyubashevsky and Schaffner 2018)

- ROM, QROM, tight!
- Requires $\#[-B,B]^n \ll \sqrt{\#\mathbb{F}_p}$:
 - Public keys cover a small fraction of the isogeny graph;
 - Asymptotically natural choice for quantum security;
- Additional assumption on indistinguishability of public keys.

Take home (msg, σ)

- By combining ideas from isogeny + lattice + hash based signatures, we give work to all
 cryptanalysts in this room.
- Post-quantum isogeny signatures are still far from practical.
- Post-post-quantum isogeny signatures look more realistic, you can start using them now if you are an isogeny hippie.
- Tons of open questions on classical and quantum security, and proofs.
- The isogenista dream: a one-pass post-quantum signature scheme based on walks in isogeny graphs.

