# Verifiable Delay Functions from Supersingular Isogenies and Pairings 

Luca De Feo

IBM Research Zürich
based on joint work with J. Burdges (@jeffburdges), S. Masson (@SimonMasson2), C. Petit, A. Sanso (@asanso)
November 12, 2020, CV Labs

## Computational hardness in cryptography

```
boring picture of Alice, Bob and Eve goes here
```


## How long will it take Eve to decrypt the message?

Complexity theory: (sub)exponentially more than Bob.

- Asymptotics don't say anything on constants.
- Based on an average-case analysis, ignores worst case.
- Typically based on a Turing-machine or RAM-like model, doesn't necessarily fit reality.
Real world crypto: at least $2^{128}$ "operations".
- But what's an "operation"?
- Often based on extrapolations (see, in particular, factoring).
- Doesn't account for parallelism.
- More a measure of cost than a measure of time.


## Time-lock Puzzles



Basically a Key Derivation Function (family) with two algorithms:
$\operatorname{KDF}(T, \Delta)$ : which computes a key $k$ given a trapdoor $T$ and a delay $\Delta$. $\operatorname{SlowKDF}(\triangle)$ : which computes the same key $k$ without knowledge of the trapdoor, in time approximately $\Delta$. constant.
... under the conjecture that no algorithm faster than SlowKDF can compute $k$ from $\Delta$ with non-negligible probability.

## Time-lock Puzzles



Basically a Key Derivation Function (family) with two algorithms:
$\operatorname{KDF}(T, \Delta)$ : which computes a key $k$ given a trapdoor $T$ and a delay $\Delta$. $\operatorname{SlowKDF}(\triangle)$ : which computes the same key $k$ without knowledge of the trapdoor, in time approximately $\Delta$. constant.
... under the conjecture that no algorithm faster than SlowKDF can compute $k$ from $\Delta$ with non-negligible probability.

## Time-lock Puzzles



Basically a Key Derivation Function (family) with two algorithms:
$\operatorname{KDF}(T, \Delta)$ : which computes a key $k$ given a trapdoor $T$ and a delay $\Delta$. $\operatorname{SlowKDF}(\triangle)$ : which computes the same key $k$ without knowledge of the trapdoor, in time approximately $\Delta$. constant.
... under the conjecture that no algorithm faster than SlowKDF can compute $k$ from $\Delta$ with non-negligible probability.

## Time-lock Puzzles



Basically a Key Derivation Function (family) with two algorithms:
$\operatorname{KDF}(T, \Delta)$ : which computes a key $k$ given a trapdoor $T$ and a delay $\Delta$. $\operatorname{SlowKDF}(\triangle)$ : which computes the same key $k$ without knowledge of the trapdoor, in time approximately $\Delta$. constant.
... under the conjecture that no algorithm faster than SlowKDF can compute $k$ from $\Delta$ with non-negligible probability.

## Time-lock Puzzles



Basically a Key Derivation Function (family) with two algorithms:
$\operatorname{KDF}(T, \Delta)$ : which computes a key $k$ given a trapdoor $T$ and a delay $\Delta$. $\operatorname{SlowKDF}(\triangle)$ : which computes the same key $k$ without knowledge of the trapdoor, in time approximately $\Delta$. constant.
... under the conjecture that no algorithm faster than SlowKDF can compute $k$ from $\Delta$ with non-negligible probability.

## Time-lock Puzzles



Basically a Key Derivation Function (family) with two algorithms:
$\operatorname{KDF}(T, \Delta)$ : which computes a key $k$ given a trapdoor $T$ and a delay $\Delta$. $\operatorname{SlowKDF}(\triangle)$ : which computes the same key $k$ without knowledge of the trapdoor, in time approximately $\Delta$. constant.
... under the conjecture that no algorithm faster than SlowKDF can compute $k$ from $\Delta$ with non-negligible probability.

## Time-lock Puzzles



Basically a Key Derivation Function (family) with two algorithms:
$\operatorname{KDF}(T, \Delta)$ : which computes a key $k$ given a trapdoor $T$ and a delay $\Delta$. $\operatorname{SlowKDF}(\triangle)$ : which computes the same key $k$ without knowledge of the trapdoor, in time approximately $\Delta$. constant.
... under the conjecture that no algorithm faster than SlowKDF can compute $k$ from $\Delta$ with non-negligible probability.

## Some applications

## Sealed bid auctions

Standard solution based on encryption:

- Each bidder encrypts its bid;
- At the end of the auction each bidder reveals the key.

Problem: some bidders may refuse to reveal the key.
Especially important in Vickrey auctions (winner pays second highest bid).

## Some applications

## Sealed bid auctions

Standard solution based on encryption:

- Each bidder encrypts its bid;
- At the end of the auction each bidder reveals the key.

Problem: some bidders may refuse to reveal the key.
Especially important in Vickrey auctions (winner pays second highest bid).
Solution:

- Each bidder encrypts bid with a TL puzzle;
- At the end of the auction each well behaved bidder reveals its trapdoor;
- Other bids are opened with SlowKDF. (can get quite expensive, though)

Other applications: Voting, key escrow, ...

## Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)



A sort of deterministic Proof of Sequential Work
Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating $f(x)$ takes long time: predictably long time, on almost all random inputs $x$, even after having seen many values $f\left(x^{\prime}\right)$, even given massive number of processors;
- Verifying $y=f(x)$ is efficient:
ideally, exponential separation between evaluation and verification.


## Example application: distributed lotteries

Participants $\mathbf{A}, \mathbf{B}, \ldots, \mathbf{Z}$ want to agree on a random winning ticket.

## Flawed protocol

- Each participant $x$ broadcasts a random string $s_{x}$;
- Winning ticket is $H\left(s_{A}, \ldots, s_{Z}\right)$.


## Example application: distributed lotteries

Participants A, B, ..., Z want to agree on a random winning ticket.

## Flawed protocol

- Each participant $x$ broadcasts a random string $s_{x}$;
- Winning ticket is $H\left(s_{A}, \ldots, s_{Z}\right)$.

Cheating participant $\mathbf{Z}$ waits to see all other strings, then brute-forces $s_{Z}$ to win lottery.

## Example application: distributed lotteries

Participants A, B, ..., Z want to agree on a random winning ticket.

## Flawed protocol

- Each participant $x$ broadcasts a random string $s_{x}$;
- Winning ticket is $H\left(s_{A}, \ldots, s_{Z}\right)$.

Cheating participant $\mathbf{Z}$ waits to see all other strings, then brute-forces $s_{Z}$ to win lottery.

## Fixes

- Make the hash function sl0000000000000000000000000000w;
e.g., participants have 10 minutes to submit $s_{x}$, outcome will be known after 20 minutes.


## Example application: distributed lotteries

Participants A, B, ..., Z want to agree on a random winning ticket.

## Flawed protocol

- Each participant $x$ broadcasts a random string $s_{x}$;
- Winning ticket is $H\left(s_{A}, \ldots, s_{Z}\right)$.

Cheating participant $\mathbf{Z}$ waits to see all other strings, then brute-forces $s_{Z}$ to win lottery.

## Fixes

- Make the hash function sl0000000000000000000000000000w;
e.g., participants have 10 minutes to submit $s_{x}$, outcome will be known after 20 minutes.
- Make it possible to verify $w=H\left(s_{A}, \ldots, s_{Z}\right)$ fast.


## More applications

## Randomness beacons

Goal: Generate a public stream of provably random numbers.
Standard technique: Hash output of public high entropy sources (e.g.: stock market, weather, ...) at regular intervals (epochs).
Risk: Close to the end of the epoch, adversary manipulates the data (e.g., buys stock) repeatedly until they get the desired alea.
Fix: Run the hashed value through a VDF with delay longer than the epoch.

## Proofs of Stake/Space

Goal: Elect epoch leader(s) in PoS blockchains.
Standard technique: PoS are assigned a "quality" (e.g.: hash of the PoS), the higher quality gets elected as leader.

Disadvantage: Requires synchronization of miners.
Fix (Chia): Run the PoS through a VDF with delay proportional to quality.

## VDF Craze

Who is investing in VDFs
VDF Alliance ${ }^{1}$ : formed by Etherereum, Protocol Labs, Tezos, Interchain, Supranational.
VDF competitions (cash prizes in the order of $100 \mathrm{k} \$$ ):

- RSA-based, run by VDF Alliance ${ }^{2}$.
- Squaring modulo $N$,
- Distributed generation of RSA numbers.
- Class group based, run by Chia ${ }^{3}$.
- Class number computation.
- Squaring in class groups.

More resources: https://vdfresearch.org/.

[^0]
## Delay Encryption (https://ia.cr/2020/638)



- Trapdoor-less time capsule.
- Delay Encryption $\Rightarrow$ Time-lock Puzzles.
- Delay Encryption $\Rightarrow$ VDF.
- Only known from isogenies.
- Applications: better auctions, voting, ...


## Delay Encryption (https://ia.cr/2020/638)



- Trapdoor-less time capsule.
- Delay Encryption $\Rightarrow$ Time-lock Puzzles.
- Delay Encryption $\Rightarrow$ VDF.
- Only known from isogenies.
- Applications: better auctions, voting, ...
Not this talk.


## Group based Delay Functions



| MannheimGernsheim |  | $\begin{aligned} & 11 \\ & 17 \end{aligned}$ | Train is c | celled |
| :---: | :---: | :---: | :---: | :---: |
| Köln Hbf Berlin Hbf |  | $\begin{aligned} & 7 \\ & 9 \end{aligned}$ | $\begin{aligned} & \text { Train is } c \\ & \text { Train is } c \end{aligned}$ | cancelled <br> cancelled |
| Passau Hbf Siegen |  | $\begin{array}{r} 6 \\ 16 \end{array}$ | Train | ce |
| Saarbrücken Fulda | Hbf | $\begin{array}{r} 20 \\ 8 \end{array}$ | Train is | ancelle |
| Bruxelles-Mi Hanau Hbf |  | $\begin{array}{r} 19 \\ 5 \end{array}$ | Aujourg | $\begin{aligned} & \text { hui du qua } \\ & \text { eute auf } \end{aligned}$ |
| DB-Zugverkehr beeinträchtigt. Bitte id informieren Sie sich auch im Internet |  |  |  |  |

## Rivest-Shamir-Wagner TL Puzzle ('96)

## Setup

$\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus
$N$ public, $p, q$ private

## Slow KDF

With delay parameter $\Delta$ :

$$
\begin{aligned}
f:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto x^{2^{\Delta}}
\end{aligned}
$$

(Conjecturally) takes $\Delta$ squarings.

## Rivest-Shamir-Wagner TL Puzzle ('96)

## Setup

$\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus
$N$ public, $p, q$ private

## Slow KDF

With delay parameter $\Delta$ :

$$
\begin{aligned}
f:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto x^{2^{\Delta}}
\end{aligned}
$$

(Conjecturally) takes $\Delta$ squarings.

## Rivest-Shamir-Wagner TL Puzzle ('96)

## Setup <br> $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus <br> $N$ public, $p, q$ private

## Slow KDF

With delay parameter $\Delta$ :

$$
\begin{aligned}
f:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto x^{2^{\Delta}}
\end{aligned}
$$

(Conjecturally) takes $\Delta$ squarings.

## Rivest-Shamir-Wagner TL Puzzle ('96)

## Setup <br> $\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus <br> $N$ public, $p, q$ private

## Slow KDF

With delay parameter $\Delta$ :

$$
\begin{aligned}
f:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto x^{2^{\Delta}}
\end{aligned}
$$

$$
x^{2^{\Delta}}
$$

(Conjecturally) takes $\Delta$ squarings.

## Rivest-Shamir-Wagner TL Puzzle ('96)

## Setup

$\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus
$N$ public, $p, q$ private

## Slow KDF

With delay parameter $\Delta$ :

$$
\begin{aligned}
f:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto x^{2^{\Delta}}
\end{aligned}
$$

(Conjecturally) takes $\Delta$ squarings.


KDF: knowing $p, q$, we can take a shortcut!

## VDFs from groups of unknown order

## Setup

$\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, $N$ public, $p, q$ unknown

## Evaluation

With delay parameter $\Delta$ :

$$
\begin{aligned}
f:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto x^{2^{\Delta}}
\end{aligned}
$$


(Conjecturally) takes $\Delta$ squarings.

## VDFs from groups of unknown order

## Setup

$\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, $N$ public, $p, q$ unknown

## Evaluation

With delay parameter $\Delta$ :

$$
\begin{aligned}
f:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto x^{2^{\Delta}}
\end{aligned}
$$

(Conjecturally) takes $\Delta$ squarings.


If we knew $p, q$, then we could easily verify...

## VDFs from groups of unknown order

## Setup

$\mathbb{Z} / N \mathbb{Z}$ with $N=p q$ an RSA modulus, $N$ public, $p, q$ unknown

## Evaluation

With delay parameter $\Delta$ :

$$
\begin{aligned}
f:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto x^{2^{\Delta}}
\end{aligned}
$$

(Conjecturally) takes $\Delta$ squarings.


If we knew $p, q$, then we could easily verify... but we don't!

## VDFs from groups of unknown order

## Proofs of exponentiation

Pietrzak: recursive argument, rather expensive, low order assumption.
Wesolowski: arithmetic argument, cheaper, ad hoc assumption.
Both made non-interactive via the Fiat-Shamir transform.

## VDFs from groups of unknown order

## Proofs of exponentiation

Pietrzak: recursive argument, rather expensive, low order assumption.
Wesolowski: arithmetic argument, cheaper, ad hoc assumption.
Both made non-interactive via the Fiat-Shamir transform.

## Removing trusted third parties

- RSA setup requires trusted generation of $N=p q$ (single or distributed authority);
- The only property used by the VDFs is that the order of $(\mathbb{Z} / N \mathbb{Z})^{\times}$is unknown;
- Can adapt the protocol to any cryptographic group of unknown order: e.g., quadratic imaginary class groups of unknown order can be publicly generated with no trusted setup!


## The passage of time

Some (problematic?) key assumptions:

- A squaring is a squaring. It cannot possibly go faster than xxx ns!
- You have a machine that computes a squaring in not much more than that!
- $n$ squarings are $n$ squarings. It cannot take less than $n \times$ one squaring to do them!
- Crucially, even if you have $n$ parallel processors!

These are likely all false, but seem to hold in practice...

## The passage of time

Some (problematic?) key assumptions:

- A squaring is a squaring. It cannot possibly go faster than xxx ns!
- You have a machine that computes a squaring in not much more than that!
- $n$ squarings are $n$ squarings. It cannot take less than $n \times$ one squaring to do them!
- Crucially, even if you have $n$ parallel processors!

These are likely all false, but seem to hold in practice...
Some concrete numbers:

- 1 squaring modulo a 2048-bits integer (unknown factorization)
- takes $\approx 1 \mu$ s in software;
- the current record in FPGA is 25ns.
- Some example delays:
- 1 hour $\rightarrow \approx 2^{38}$ squarings,
- 1 year $\rightarrow \approx 2^{51}$ squarings,
- 1 M years $\rightarrow \approx 2^{71}$ squarings.


## Isogeny based Delay Functions



## Elliptic curves and isogenies

Elliptic curves

$$
y^{2}=x^{3}+a x+b
$$

and their famous group law...


## Elliptic curves and isogenies

Elliptic curves

$$
y^{2}=x^{3}+a x+b
$$

and their famous group law...
Isogenies are morphisms of elliptic curves.


## Elliptic curves and isogenies

Elliptic curves

$$
y^{2}=x^{3}+a x+b
$$

and their famous group law...
Isogenies are morphisms of elliptic curves.

$$
\frac{\text { Elliptic curves }}{\text { Isogenies }}=\frac{\text { Vector spaces }}{\text { Matrices }}
$$



Isogenies: an example over $\mathbb{F}_{11}$

$$
E: y^{2}=x^{3}+x
$$

$E^{\prime}: y^{2}=x^{3}-4 x$


$$
\phi(x, y)=\left(\frac{x^{2}+1}{x}, \quad y \frac{x^{2}-1}{x^{2}}\right)
$$

Isogenies: an example over $\mathbb{F}_{11}$

$$
E: y^{2}=x^{3}+x
$$

$$
E^{\prime}: y^{2}=x^{3}-4 x
$$



$$
\phi(x, y)=\left(\frac{x^{2}+1}{x}, \quad y \frac{x^{2}-1}{x^{2}}\right)
$$

- Kernel generator in red.
- This is a degree 2 map.
- Analogous to $x \mapsto x^{2}$ in $\mathbb{F}_{q}^{*}$.


## Up to isomorphism

## Up to isomorphism

## Up to isomorphism

## Up to isomorphism



## Up to isomorphism

## Up to isomorphism

## Up to isomorphism

## Up to isomorphism

## Up to isomorphism

## Up to isomorphism

## Up to isomorphism

## Up to isomorphism

## Up to isomorphism

## Up to isomorphism



## Up to isomorphism

## Up to isomorphism



## Up to isomorphism



## Up to isomorphism



## Up to isomorphism



## Up to isomorphism



## Up to isomorphism

$$
j=1728
$$

## Up to isomorphism



## Up to isomorphism



The beauty and the beast (credit: Lorenz Panny)
Components of particular isogeny graphs look like this:


Which of these is good for VDFs?

The beauty and the beast (credit: LorenzPanny)
Components of particular isogeny graphs look like this:


Which of these is good for VDFs? Both!

## Slooooooooooooooooooooooow isogenies (https://ia.cr/2019/166)

## Setup

With delay parameter $T$ :

- A loo00000000000000000000000ng isogeny path,

$E_{T}$


## Slooooooooooooooooooooooow isogenies (https://ia.cr/2019/166)

## Setup

With delay parameter $T$ :

- A loo00000000000000000000000ng isogeny path,
- A starting curve $E_{0}$,
- An isogeny $\phi: E_{0} \rightarrow E_{T}$ of degree $2^{T}$.

$E_{T}$

Slooo0000000000000000000w isogenies (https://ia.cr/2019/166)

## Setup

With delay parameter $T$ :

- A looo0000000000000000000000ng isogeny path,
- A starting curve $E_{0}$,
- An isogeny $\phi: E_{0} \rightarrow E_{T}$ of degree $2^{T}$.


## Evaluation

$\phi$ is the VDF:

$$
\begin{aligned}
\phi: E_{0}\left(\mathbb{F}_{p}\right) & \longrightarrow E_{T}\left(\mathbb{F}_{p}\right) \\
P & \longmapsto \phi(P)
\end{aligned}
$$

$$
\stackrel{\bullet}{E}_{T}
$$

Conjecturally, no faster way than composing degree 2 isogenies.

Slooo0000000000000000000w isogenies (https://ia.cr/2019/166)

## Setup

With delay parameter $T$ :

- A looo0000000000000000000000ng isogeny path,
- A starting curve $E_{0}$,
- An isogeny $\phi: E_{0} \rightarrow E_{T}$ of degree $2^{T}$.


## Evaluation

$\phi$ is the VDF:

$$
\begin{aligned}
\phi: E_{0}\left(\mathbb{F}_{p}\right) & \longrightarrow E_{T}\left(\mathbb{F}_{p}\right) \\
P & \longmapsto \phi(P)
\end{aligned}
$$



How to verify?

$$
E_{T}
$$

Conjecturally, no faster way than composing degree 2 isogenies.

Slooo0000000000000000000w isogenies (https://ia.cr/2019/166)

## Setup

With delay parameter $T$ :

- A looo0000000000000000000000ng isogeny path,
- A starting curve $E_{0}$,
- An isogeny $\phi: E_{0} \rightarrow E_{T}$ of degree $2^{T}$.


## Evaluation

$\phi$ is the VDF:

$$
\begin{aligned}
\phi: E_{0}\left(\mathbb{F}_{p}\right) & \longrightarrow E_{T}\left(\mathbb{F}_{p}\right) \\
P & \longmapsto \phi(P)
\end{aligned}
$$

## Pairings!

$$
\stackrel{\bullet}{E}_{T}
$$

Conjecturally, no faster way than composing degree 2 isogenies.

Slooo0000000000000000000w isogenies (https://ia.cr/2019/166)

## Setup

With delay parameter $T$ :

- A loo00000000000000000000000ng isogeny path,
- A starting curve $E_{0}$,
- An isogeny $\phi: E_{0} \rightarrow E_{T}$ of degree $2^{T}$.


## Evaluation

$\phi$ is the VDF:

$$
\begin{gathered}
e_{N}(\phi(P), \phi(Q)) \\
= \\
e_{N}(P, Q)^{2^{T}}
\end{gathered}
$$

$$
\begin{aligned}
\phi: E_{0}\left(\mathbb{F}_{p}\right) & \longrightarrow E_{T}\left(\mathbb{F}_{p}\right) \\
P & \longmapsto \phi(P)
\end{aligned}
$$

$$
E_{T}
$$

Conjecturally, no faster way than composing degree 2 isogenies.

## Comparison

|  | Wesolowski |  | Pietrzak |  | Ours |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RSA | class group | RSA | class group | $\mathbb{F}_{p}$ | $\mathbb{F}_{p^{2}}$ |
| proof size | $O(1)$ | $O(1)$ | $O(\log (T))$ | $O(\log (T))$ | - | - |
| aggregatable | yes | yes | yes | yes | - | - |
| watermarkable | yes | yes | yes | yes | (yes) | (yes) |
| perfect soundness | no | no | no | no | yes | yes |
| long setup | no | no | no | no | yes | yes |
| trusted setup | yes | no | yes | no | yes | yes |
| updatable | no | - | no | - | yes | yes |
| 4 synchronous | yes | - | yes | - | no | no |
| best attack | $L_{N}(1 / 3)$ | $L_{N}(1 / 2)$ | $L_{N}(1 / 3)$ | $L_{N}(1 / 2)$ | $L_{p}(1 / 3)$ | $L_{p}(1 / 3)$ |
| quantum annoying | no | (yes) | no | (yes) | no | yes |

## For concreteness

## Elementary step:

RSA: $\quad x \longmapsto x^{2} \bmod N$

Isogenies:

$$
x \longmapsto \frac{(x+1)^{2}}{4 \alpha_{i} x} \bmod p
$$

( $\alpha_{1}, \ldots, \alpha_{T}$ correspond to the isogeny steps)

Typical parameters: $\log _{2} p \approx 1500$ gives security similar to $\log _{2} N \approx 2048$.
Huge storage: for a 1 hour delay,

- Isogeny path of length $\approx 7 \cdot 10^{10}$,
- evaluator needs $\approx 16 \mathrm{TiB}$ for storing all $\left(\alpha_{1}, \ldots, \alpha_{T}\right)$,
- Throughput of $\approx 4.5 \mathrm{GiB} / \mathrm{s}$ to read the $\alpha_{i}$ 's from memory.
- Storage/speed compromises are available, but it's a tough call!


## (My favorite) open questions

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
- Hash into the supersingular set, or
- Construct ordinary pairing friendly curves with large discriminant.
- Explore more advanced pairing+delay constructions.
- Spend millions on dedicated hardware for 2-isogenies.


## Just Add Isogenies ${ }^{\text {TM }}$ !

## Thank you

@ @luca_defeo


[^0]:    ${ }^{1}$ https://www.vdfalliance.org/
    ${ }^{2}$ https://supranational.atlassian.net/wiki/spaces/VA/pages/36569208/FPGA+Competition
    ${ }^{3}$ https://github.com/Chia-Network/vdf-competition/

