

Verifiable Delay Functions from Supersingular Isogenies and Pairings

Luca De Feo

IBM Research Zürich

based on joint work with J. Burdges (@jeffburdges), S. Masson (@SimonMasson2), C. Petit, A. Sanso (@asanso)

November 12, 2020, CV Labs

Computational hardness in cryptography

boring picture of Alice, Bob and Eve goes here

How long will it take Eve to decrypt the message?

Complexity theory: (sub)exponentially more than Bob.

- Asymptotics don't say anything on constants.
- Based on an average-case analysis, ignores worst case.
- Typically based on a Turing-machine or RAM-like model, doesn't necessarily fit reality.

Real world crypto: at least 2¹²⁸ "operations".

- But what's an "operation"?
- Often based on extrapolations (see, in particular, factoring).
- Doesn't account for parallelism.
- More a measure of cost than a measure of time.

Basically a Key Derivation Function (family) with two algorithms:

 $\mathsf{KDF}(T, \Delta)$: which computes a key k given a trapdoor T and a delay Δ . Slow $\mathsf{KDF}(\Delta)$: which computes the same key k without knowledge of the trapdoor, in time approximately $\Delta \cdot \text{constant}$.

Basically a Key Derivation Function (family) with two algorithms:

 $\mathsf{KDF}(T, \Delta)$: which computes a key k given a trapdoor T and a delay Δ . Slow $\mathsf{KDF}(\Delta)$: which computes the same key k without knowledge of the trapdoor, in time approximately $\Delta \cdot \text{constant}$.

Basically a Key Derivation Function (family) with two algorithms:

 $\mathsf{KDF}(T, \Delta)$: which computes a key k given a trapdoor T and a delay Δ . Slow $\mathsf{KDF}(\Delta)$: which computes the same key k without knowledge of the trapdoor, in time approximately $\Delta \cdot \text{constant}$.

Basically a Key Derivation Function (family) with two algorithms:

 $KDF(T, \Delta)$: which computes a key k given a trapdoor T and a delay Δ . SlowKDF(Δ): which computes the same key k without knowledge of the trapdoor, in time approximately $\Delta \cdot constant$.

Basically a Key Derivation Function (family) with two algorithms:

 $\mathsf{KDF}(T, \Delta)$: which computes a key k given a trapdoor T and a delay Δ . Slow $\mathsf{KDF}(\Delta)$: which computes the same key k without knowledge of the trapdoor, in time approximately $\Delta \cdot \text{constant}$.

Basically a Key Derivation Function (family) with two algorithms:

 $\mathsf{KDF}(T, \Delta)$: which computes a key k given a trapdoor T and a delay Δ . Slow $\mathsf{KDF}(\Delta)$: which computes the same key k without knowledge of the trapdoor, in time approximately $\Delta \cdot \text{constant}$.

Basically a Key Derivation Function (family) with two algorithms:

 $\mathsf{KDF}(T, \Delta)$: which computes a key k given a trapdoor T and a delay Δ . Slow $\mathsf{KDF}(\Delta)$: which computes the same key k without knowledge of the trapdoor, in time approximately $\Delta \cdot \text{constant}$.

Some applications

Sealed bid auctions

Standard solution based on encryption:

- Each bidder encrypts its bid;
- At the end of the auction each bidder reveals the key.

Problem: some bidders may refuse to reveal the key.

Especially important in Vickrey auctions (winner pays second highest bid).

Some applications

Sealed bid auctions

Standard solution based on encryption:

- Each bidder encrypts its bid;
- At the end of the auction each bidder reveals the key.

Problem: some bidders may refuse to reveal the key.

Especially important in Vickrey auctions (winner pays second highest bid).

Solution:

- Each bidder encrypts bid with a TL puzzle;
- At the end of the auction each well behaved bidder reveals its trapdoor;
- Other bids are opened with SlowKDF. (can get quite expensive, though)

Other applications: Voting, key escrow, ...

Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

A sort of deterministic Proof of Sequential Work Function (family) $f : X \rightarrow Y$ s.t.: • Evaluating f(x) takes long time: • predictably long time, • on almost all random inputs x, • even after having seen many values f(x'), • even given massive number of processors;

- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Cheating participant **Z** waits to see all other strings, then brute-forces s_Z to win lottery.

Participants A, B, ..., Z want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Cheating participant **Z** waits to see all other strings, then brute-forces s_Z to win lottery.

Fixes

- - e.g., participants have 10 minutes to submit s_x ,
 - outcome will be known after 20 minutes.

Participants A, B, ..., Z want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Cheating participant **Z** waits to see all other strings, then brute-forces s_Z to win lottery.

Fixes

- - e.g., participants have 10 minutes to submit s_x ,
 - outcome will be known after 20 minutes.
- Make it possible to verify $w = H(s_A, \ldots, s_Z)$ fast.

More applications

Randomness beacons

Goal: Generate a public stream of provably random numbers.

Standard technique: Hash output of public high entropy sources (e.g.: stock market, weather, ...) at regular intervals (epochs).

Risk: Close to the end of the epoch, adversary manipulates the data (e.g., buys stock) repeatedly until they get the desired alea.

Fix: Run the hashed value through a VDF with delay longer than the epoch.

Proofs of Stake/Space

Goal: Elect epoch leader(s) in PoS blockchains.

Standard technique: PoS are assigned a "quality" (e.g.: hash of the PoS), the higher quality gets elected as leader.

Disadvantage: Requires synchronization of miners.

Fix (Chia): Run the PoS through a VDF with delay proportional to quality.

VDF Craze

Who is investing in VDFs

VDF Alliance¹: formed by Etherereum, Protocol Labs, Tezos, Interchain, Supranational.

VDF competitions (cash prizes in the order of 100k\$):

- RSA-based, run by VDF Alliance².
 - Squaring modulo N,
 - Distributed generation of RSA numbers.
- Class group based, run by Chia³.
 - Class number computation.
 - Squaring in class groups.

More resources: https://vdfresearch.org/.

²https://supranational.atlassian.net/wiki/spaces/VA/pages/36569208/FPGA+Competition ³https://github.com/Chia-Network/vdf-competition/

¹https://www.vdfalliance.org/

Delay Encryption (https://ia.cr/2020/638)

- Trapdoor-less time capsule.
- Delay Encryption ⇒ Time-lock Puzzles.
- Delay Encryption \Rightarrow VDF.
- Only known from isogenies.
- Applications: better auctions, voting, ...

Delay Encryption (https://ia.cr/2020/638)

- Trapdoor-less time capsule.
- Delay Encryption ⇒ Time-lock Puzzles.
- Delay Encryption \Rightarrow VDF.
- Only known from isogenies.
- Applications: better auctions, voting, ...

Not this talk.

Group based **Delay Functions**

	DB
Ziel Destination	Gleis Platform/Voie
Mannheim-Friedrich	11
Gernsheim	17 Train is cancelled
Köln Hbf	7 Train is cancelled
Berlin Hbf	9 Train is cancelled
Passau Hbf	6 Train is cancelled
Siegen	16
Saarbrücken Hbf	20
Fulda	8 Train is cancelled
Bruxelles-Midi Hanau Hbf	19Aujourd hui du qua5Jai 5 - Heute auf G
r DB-Zugverk <mark>ehr bee</mark> id informieren Sie si	

Setup

 $\mathbb{Z}/N\mathbb{Z}$ with N = pq an RSA modulus N public, p, q private

Slow KDF

With delay parameter Δ :

$$f:(\mathbb{Z}/N\mathbb{Z})^{ imes} \longrightarrow (\mathbb{Z}/N\mathbb{Z})^{ imes} \ x \longmapsto x^{2^{\Delta}}$$

(Conjecturally) takes Δ squarings.

• x

Setup

 $\mathbb{Z}/N\mathbb{Z}$ with N = pq an RSA modulus N public, p, q private

Slow KDF

With delay parameter Δ :

$$f:(\mathbb{Z}/N\mathbb{Z})^{ imes} \longrightarrow (\mathbb{Z}/N\mathbb{Z})^{ imes} \ x \longmapsto x^{2^{\Delta}}$$

(Conjecturally) takes Δ squarings.

 $\begin{pmatrix} x^2 \\ x \end{pmatrix}$

Setup

 $\mathbb{Z}/N\mathbb{Z}$ with N = pq an RSA modulus N public, p, q private

Slow KDF

With delay parameter Δ :

Setup

 $\mathbb{Z}/N\mathbb{Z}$ with N = pq an RSA modulus N public, p, q private

Slow KDF

With delay parameter Δ :

$$f:(\mathbb{Z}/N\mathbb{Z})^{ imes} \longrightarrow (\mathbb{Z}/N\mathbb{Z})^{ imes} \ x \longmapsto x^{2^{\Delta}}$$

Setup

 $\mathbb{Z}/N\mathbb{Z}$ with N = pq an RSA modulus N public, p, q private

Slow KDF

With delay parameter Δ :

$$f:(\mathbb{Z}/N\mathbb{Z})^{ imes} \longrightarrow (\mathbb{Z}/N\mathbb{Z})^{ imes} \ x \longmapsto x^{2^{\Delta}}$$

 $\mathbb{Z}/N\mathbb{Z}$ with N = pq an RSA modulus, N public, p, q unknown

Evaluation With delay parameter Δ :

$$f:(\mathbb{Z}/N\mathbb{Z})^{ imes} \longrightarrow (\mathbb{Z}/N\mathbb{Z})^{ imes} \ x \longmapsto x^{2^{\Delta}}$$

(Conjecturally) takes \triangle squarings.

Setup

 $\mathbb{Z}/N\mathbb{Z}$ with N = pq an RSA modulus, N public, p, q unknown

Evaluation With delay parameter Δ :

$$egin{array}{lll} f:(\mathbb{Z}/N\mathbb{Z})^{ imes}&\longrightarrow(\mathbb{Z}/N\mathbb{Z})^{ imes}\ x\longmapsto x^{2^{\Delta}} \end{array}$$

Setup

 $\mathbb{Z}/N\mathbb{Z}$ with N = pq an RSA modulus, N public, p, q unknown

Evaluation With delay parameter Δ :

Proofs of exponentiation

Pietrzak: recursive argument, rather expensive, low order assumption. Wesolowski: arithmetic argument, cheaper, *ad hoc* assumption. Both made non-interactive via the Fiat-Shamir transform.

Proofs of exponentiation

Pietrzak: recursive argument, rather expensive, low order assumption. Wesolowski: arithmetic argument, cheaper, *ad hoc* assumption. Both made non-interactive via the Fiat-Shamir transform.

Removing trusted third parties

- RSA setup requires trusted generation of N = pq (single or distributed authority);
- The only property used by the VDFs is that the order of $(\mathbb{Z}/N\mathbb{Z})^{\times}$ is unknown;
- Can adapt the protocol to any cryptographic group of unknown order:
 - e.g., quadratic imaginary class groups of unknown order can be publicly generated with no trusted setup!

The passage of time

Some (problematic?) key assumptions:

- A squaring is a squaring. It cannot possibly go faster than xxx ns!
- You have a machine that computes a squaring in not much more than that!
- n squarings are n squarings. It cannot take less than $n \times$ one squaring to do them!
- Crucially, even if you have *n* parallel processors!

These are likely all false, but seem to hold in practice...

The passage of time

Some (problematic?) key assumptions:

- A squaring is a squaring. It cannot possibly go faster than xxx ns!
- You have a machine that computes a squaring in not much more than that!
- *n* squarings are *n* squarings. It cannot take less than $n \times$ one squaring to do them!
- Crucially, even if you have *n* parallel processors!

These are likely all false, but seem to hold in practice...

Some concrete numbers:

- 1 squaring modulo a 2048-bits integer (unknown factorization)
 - takes $\approx 1\mu$ s in software;
 - the current record in FPGA is 25ns.
- Some example delays:
 - 1 hour $\rightarrow \approx 2^{38}$ squarings,
 - 1 year $ightarrow pprox 2^{51}$ squarings,
 - 1M years $\rightarrow \approx 2^{71}$ squarings.

Isogeny based Delay Functions

Elliptic curves and isogenies

Elliptic curves

$$y^2 = x^3 + ax + b$$

and their famous group law...

Elliptic curves and isogenies

Elliptic curves

$$y^2 = x^3 + ax + b$$

and their famous group law...

Isogenies are morphisms of elliptic curves.

Elliptic curves and isogenies

Elliptic curves

$$y^2 = x^3 + ax + b$$

and their famous group law...

Isogenies are morphisms of elliptic curves.

 $\frac{\text{Elliptic curves}}{\text{Isogenies}} = \frac{\text{Vector spaces}}{\text{Matrices}}$

Luca De Feo (IBM Research Zürich)

$$j=1728$$

The beauty and the beast (credit: Lorenz Panny)

Components of particular isogeny graphs look like this:

Which of these is good for VDFs?

The beauty and the beast (credit: Lorenz Panny)

Components of particular isogeny graphs look like this:

Which of these is good for VDFs? Both!

Setup

With delay parameter T:

Setup

With delay parameter T:

- A starting curve E_0 ,
- An isogeny $\phi : E_0 \to E_T$ of degree 2^T .

Setup

With delay parameter T:

- A starting curve E_0 ,
- An isogeny $\phi : E_0 \to E_T$ of degree 2^T .

Evaluation

 ϕ is the VDF:

$$egin{aligned} \phi &: E_0(\mathbb{F}_p) \longrightarrow E_T(\mathbb{F}_p) \ & P \longmapsto \phi(P) \end{aligned}$$

Setup

With delay parameter T:

- A starting curve E_0 ,
- An isogeny $\phi : E_0 \to E_T$ of degree 2^T .

Evaluation

 ϕ **is** the VDF:

$$egin{aligned} \phi &: E_0(\mathbb{F}_p) \longrightarrow E_T(\mathbb{F}_p) \ & P \longmapsto \phi(P) \end{aligned}$$

Setup

With delay parameter T:

- A starting curve E_0 ,
- An isogeny $\phi : E_0 \to E_T$ of degree 2^T .

Evaluation

 ϕ is the VDF:

$$egin{aligned} \phi &: E_0(\mathbb{F}_p) \longrightarrow E_T(\mathbb{F}_p) \ & P \longmapsto \phi(P) \end{aligned}$$

Setup

With delay parameter T:

- A starting curve E_0 ,
- An isogeny $\phi : E_0 \to E_T$ of degree 2^T .

Evaluation

 ϕ **is** the VDF:

$$egin{aligned} \phi &: E_0(\mathbb{F}_p) \longrightarrow E_T(\mathbb{F}_p) \ & P \longmapsto \phi(P) \end{aligned}$$

Comparison

	Wesolowski		Pietrzak		Ours	
	RSA	class group	RSA	class group	\mathbb{F}_p	\mathbb{F}_{p^2}
proof size	O(1)	<i>O</i> (1)	$O(\log(T))$	$O(\log(T))$	_	
aggregatable	yes	yes	yes	yes	—	—
watermarkable	yes	yes	yes	yes	(yes)	(yes)
perfect soundness	no	no	no	no	yes	yes
<i>long</i> setup	no	no	no	no	yes	yes
trusted setup	yes	no	yes	no	yes	yes
↓ updatable	no	_	no	_	yes	yes
🛛 synchronous	yes		yes	_	no	no
best attack	$L_N(1/3)$	$L_N(1/2)$	$L_N(1/3)$	$L_N(1/2)$	$L_{p}(1/3)$	$L_p(1/3)$
quantum annoying	no	(yes)	no	(yes)	no	yes

For concreteness

Elementary step:

RSA:

Isogenies:

 $x\longmapsto rac{(x+1)^2}{4lpha_i x} \mod p$

 $x \mapsto x^2 \mod N$

 $(\alpha_1, \ldots, \alpha_T \text{ correspond to the isogeny steps})$

Typical parameters: $\log_2 p \approx 1500$ gives security similar to $\log_2 N \approx 2048$.

Huge storage: for a 1 hour delay,

- Isogeny path of length $\approx 7 \cdot 10^{10}$,
- evaluator needs \approx 16TiB for storing all ($\alpha_1, \ldots, \alpha_T$),
- Throughput of \approx 4.5 GiB/s to read the α_i 's from memory.
- Storage/speed compromises are available, but it's a tough call!

(My favorite) open questions

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
 - Hash into the supersingular set, or
 - Construct ordinary pairing friendly curves with large discriminant.
- Explore more advanced pairing+delay constructions.
- Spend millions on dedicated hardware for 2-isogenies.

Just Add Isogenies™!

