SQIsign

Marius A. Aardal Gora Adj Diego F. Aranha Andrea Basso Isaac Andrés Canales Martínez Maria Corte-Real Santos Pierrick Dartois Luca De Feo

Max Duparc Jonathan Komada Eriksen Décio Luiz Gazzoni Filho **Basil Hess**

Antonin Leroux Patrick Longa Kohei Nakagawa Michael Meyer Sikhar Patranabis Lorenz Panny Giacomo Pope Krijn Reijnders

Francisco Rodríguez-Henríguez Sina Schaeffler Jorge Chávez-Saab

Tako Boris Fouotsa

David Kohel Luciano Maino Hiroshi Onuki Christophe Petit

Damien Robert

Benjamin Wesolowski

https://sqisign.org/

September 24-26, 2025 6th PQC Standardization Conference NIST, Gaithersburg, USA

Short

Public Key	Signature	Security
66	148	NIST-1
98	222	NIST-3
130	294	NIST-5

Quaternion and **I**sogeny

Only candidate based on isogenies of supersingular elliptic curves

signature

Fiat-Shamir paradigm

Weren't isogenies broken?

Yes, SIKE was broken:

- Security based on isogeny problem with torsion point information;
- Very efficient classical algorithm to solve the SIKE problem found in 2022 (Castryck–Decru, Maino–Martindale, Robert);
- SQIsign v2 incorporates techniques developed in these attacks.

But isogenies live:

- The supersingular isogeny problem still is exponentially difficult for quantum computers;
- SQIsign's EUF-CMA reduces almost exactly to the supersingular isogeny problem;
- Breaks are part of life in cryptography.

The isogeny problem

Isogenies = algebraic group morphisms of elliptic curves

$$y^2 = x^3 + x \longrightarrow y^2 = x^3 + 1$$

The isogeny problem

Isogenies = algebraic group morphisms of elliptic curves

$$y^2 = x^3 + x$$
 ?? $y^2 = x^3 + 1$

The isogeny problem

Given two isogenous curves, compute an isogeny between them.

For random supersingular curves defined over a finite field \mathbb{F}_{p^2} :

• Best classical attack in $p^{1/2+\epsilon}$

Delfs-Galbraith, DCC 2016

• Best quantum attack in $p^{1/4+\epsilon}$

Biasse-Jao-Sankar, Indocrypt 2014

The endomorphism ring problem

Endomorphisms = Isogenies from a curve to itself

The supersingular endomorphism ring problem

Given a supersingular curve, compute a basis for its endomorphism ring

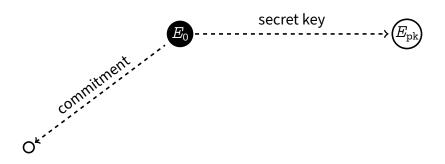
- Equivalent to the supersingular isogeny problem under (mostly tight) polynomial-time reductions
- Best algorithms = same as for the isogeny problem

$$E_0$$
 secret key $E_{\rm pk}$

$$lacktriangle$$
 Fixed curve: $y^2 = x^3 + x$

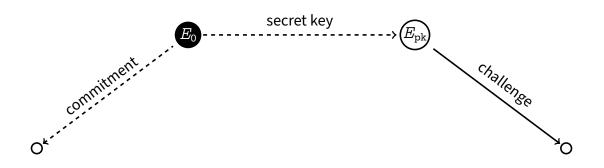
Legend:

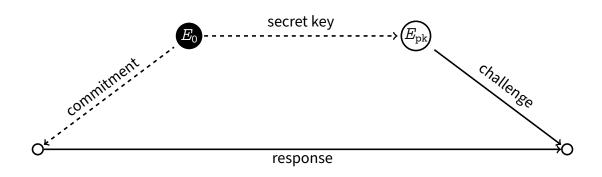
→ public isogeny ----> secret isogeny



$$lacktriangle$$
 Fixed curve: $y^2=x^3+x$ \Rightarrow public isogeny ---- \Rightarrow secret isogeny

Legend:





Single choice: characteristic of the finite field

Constraint: p + 1 divisible by a large power of 2, for performance reasons

p	Security
$5 \cdot 2^{248} - 1$	NIST-1
$65 \cdot 2^{376} - 1$	NIST-3
$27 \cdot 2^{500} - 1$	NIST-5

All other pre-computed constants are easily explainable and provably do not affect security

Performance

Parameter set	KeyGen	Sign	Verify	
Reference implementation (with default GMP installation)				
NIST-I	71.8	163.1	11.3	
NIST-III	188.2	427.0	30.4	
NIST-V	325.4	751.8	61.9	
Reference implementation (with GMPdisable-assembly)				
NIST-I	84.4	203.1	11.3	
NIST-III	227.9	548.9	30.5	
NIST-V	402.6	1021.0	62.2	
Assembly-optimized implementation for Intel Broadwell or later				
NIST-I	43.3	101.6	5.1	
NIST-III	134.0	309.2	18.6	
NIST-V	212.0	507.5	35.7	

Performance in 10⁶ CPU cycles on an Intel Core i7-13700K CPU.

Changes from Round 1

Before After

"1D" paradigm "HD" paradigm

(De Feo-Kohel-Leroux-Petit-Wesolowski 2020) (Dartois-Leroux-Robert-Wesolowski 2023)

Slow keygen and signing Fast

Reduction to non-standard problem Reduction to "well-studied" problem

Security proof

Endomorphism ring with hints

(Aardal-Basso-De Feo-Patranabis-Wesolowski 2025)

Given:

- a random supersingular curve E,
- a polynomially-sized list of random isogenies of E of degree $<\sqrt{p}$, compute the endomorphism ring of E.

Endomorphism ring problem

Given a random supersingular curve E, compute its endomorphism ring.

Security proof

Endomorphism ring with hints

(Aardal-Basso-De Feo-Patranabis-Wesolowski 2025)

Given:

- a random supersingular curve E,
- a polynomially-sized list of random isogenies of E of smooth degree $<\sqrt{p}$, compute the endomorphism ring of E.

Endomorphism ring problem

Given a random supersingular curve E, compute its endomorphism ring.

Recent developments

"Qlapoti: Simple and Efficient Translation of Quaternion Ideals to Isogenies"

Borin–Corte-Real Santos–Komada Eriksen–Invernizzi–Mula–Schaeffler–Vercauteren

- Simplifies key subroutine of SQIsign;
- Total speed-up between 10% and 80%;
- Reduced memory footprint;
- Removes some heuristics from security proof.

SQIsign advantages:

- Very small public keys and signatures (< RSA)
- Good performance
- Conservative assumption
- Still some potential for speed-ups
- Adds diversity to pq-signature portfolio

SQIsign disadvantages:

- ullet 1-2 orders of magnitude slower than lattices (pprox SPHINCS+)
- New assumption
- Constant-time implementation still a research topic