Question 11: Le magma (Z, -) est il un groupe?

Pour tout entier $n \geq 2$, soit T_n le sous-ensemble de permutations de S_n contenant toutes les transpositions de S_n et la permutation identité. La transposition entre i et j, avec $1 \leq i < j \leq n$, est notée $t_{i,j}$; on note $t_{0,0}$ la permutation identité.

Soient $t_{i,j}$ et $t_{i',j'}$ deux permutations de T_n . On pose $\alpha = ((i+i') \mod (n)) + 1$ et $\beta = ((j+j') \mod (n)) + 1$. On définit l'opération binaire ++ par $t_{i,j} + +t_{i',j'} = t_{a,b}$ avec

- Si $\alpha \neq \beta$ alors $a = min(\alpha, \beta)$ et $b = max(\alpha, \beta)$,
- sinon a = b = 0.

Question 12 : Calculer $|T_n|$ pour tout $n \geq 3$. Ecrire le contenu de T_3 .

Question 13 : Considérant T_3 , calculer $t_{1,2} + + t_{1,3}$ et $t_{1,2} + + t_{2,2}$. L'opération ++ est-elle une loi de compostion interne? Admet-elle un élément neutre? Est-elle associative?

Question 14: Soit f associant à chaque $t_{i,j} \in T_n$ la permutation $t_{i',j'} \in T_n$ telle que $t_{i,j} + t_{i',j'} = t_{0,0}$. Est ce que f est une application?

Question 15: Le magma $(T_n, ++)$ est-il un groupe pour tout $n \geq 3$?.

Examen de mathématiques pour l'informatique

Durée : 2h00. Tout Document autorisé sauf livres.

Les algorithmes pourront être exprimés en langage "libre" de votre choix.

Question 1 : Ecrire $(35)_7$ en base 4. Réaliser l'opération suivante : $(22021)_3$: $(21)_3$ sans utiliser un passage par la base 10.

Les variables a,b,c,d utilisées par la suite sont des variables booléennes.

Question 2 : Ecrire en logique du premier ordre : Tout entier pair est divisible par 4. En utilisant la table de vérité de l'implication, montrer que cette proposition est fausse.

Question 3 : Montrer (sans utiliser les tables de vérité) que (a.b+c).a.b=a.b et que $((a+b).c)+\overline{(\overline{a}.\overline{b})}=a+b$

Question 4 : Ecrire sous la forme d'un prédicat logique l'assertion suivante : "Toute nombre étant une puissance de 2 est la somme de deux nombres étant chacun une puissance de 2".

Question 5 : En utilisant la propriété de distribution et les tableaux de Carnaugh, simplifier la formule $F = \overline{a}.(\overline{b}.\overline{c}.\overline{d}\overline{c} + b.\overline{c}.\overline{d}) + a.\overline{b}.\overline{c}.\overline{d} + a\overline{b}.c.d.$

Question 6 : Donner la décomposition en cycles de la permutation p=432651. Donner la forme canonique de la permutation de S_6 dont le tableau d'inversion est 423110.

Question 7: Quelle est la taille des cycles d'une involution de S_n , avec $n \geq 2$? Chaque permutation de S_3 peut-elle être obtenu par la composition d'au plus deux Transpositions (justifiez)?

Question 8 : La transposition entre i et j de S_n , avec $n \geq 3$ et $1 \leq i < j \leq n$, est notée $p_{i,j}$. Quelles conditions doivent remplir deux transpositions $p_{i,j}$ et $p_{i',j'}$ pour que leur composition soit une involution?

Question 9 : Pour tout $n \ge 3$, donner le nombre de permutations de S_n sans point fixe constituées de deux cycles, avec 1 et n n'étant pas dans le même cycle.

Question 10: Donner un exemple d'involution qui n'est pas une transposition et qui possède un et un seul point fixe dans S_5 . Donner le nombre d'involutions qui possède un et un seul point fixe de S_n avec $n \geq 3$ pair (n.B.: penser à la condition que doit remplir n).