Méthode de Cramer pour la résolution d'un système linéaire
La méthode de Cramer permet de calculer explicitement les solutions d’un système linéaire à \(n\) variables et \(n\) inconnues ayant une solution unique (c.-à-d. le déterminant de la matrice de coefficients est non nul). Un tel système est souvent appelé système de Cramer. Pour un système linéaire avec \(n\) variables et \(n\) inconnues, cette méthode permet de relier la solution \((x_1, \dots, x_n)\) du système aux coefficients.
Calculatoirement, cette méthode est moins efficace que la méthode de Gauss, surtout si elle est implementée de façon naïve. Elle présente cependant quelques avantages par rapport à la méthode de Gauss. Tout d’abord elle permet de donner la solution du système de manière explicite. Autre avantage est qu’elle peut s’appliquer aux systèmes dont les coefficients dépendent de paramètres, ce qui rend la méthode de Gauss plus dure à appliquer. Enfin, la méthode de Cramer permet de calculer chaque coordonnée \(x_i\) de la solution indépendament des autres, un avantage quand on s’intéresse à calculer qu’une coordonnée précise.
Commençons par le cas \(n=2\). Soit le système
\[\begin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 \\ a_{21}x_1 + a_{22}x_2 &= b_2 \\ \end{aligned}\]Ce système a une solution unique si et seulement si son déterminant \(\Delta\) est non nul.
\[\Delta = \det \left( \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) = a_{11}a_{22} - a_{12}a_{21} \neq 0.\]Essayons de résoudre ce système. On remplace la deuxième ligne \(L_2\) par \(a_{11}L_2 -a_{21}L_1\), ce qui donne
\[\begin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 \\ (a_{11}a_{22}- a_{21}a_{12}) x_2 &= a_{11}b_2 - a_{21}b_1. \\ \end{aligned}\]On obtient donc directement la solution du système
\[\begin{aligned} x_1 &=& \frac{ a_{22}b_1 - a_{12}b_2}{a_{11}a_{22}- a_{21}a_{12}} = \frac{ a_{22}b_1 - a_{12}b_2}{\Delta} = \frac{\det \left(\begin{array}{cc} b_{1} & a_{12} \\ b_{2} & a_{22} \end{array} \right)}{\Delta} \\ x_2 &=& \frac{ a_{11}b_2 - a_{21}b_1}{a_{11}a_{22}- a_{21}a_{12}} = \frac{ a_{11}b_2 - a_{21}b_1}{\Delta} = \frac{\det \left(\begin{array}{cc} a_{11} &b_{1} \\ a_{21} &b_{2} \end{array} \right)}{\Delta} \end{aligned}\]Nous pouvons maintenant généraliser la méthode ci-dessus à un système de Cramer de taille \(n\ge 3\).
Soit \(A\in M_n(\mathbf{K})\) et \(B, X \in M_{n,1}(\mathbf{K}).\) Soit le système d’équations à \(n\) équations et \(n\) variables
\[\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots +a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots +a_{2n}x_n &= b_2 \\ &= \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots +a_{nn}x_n &= b_n \\ \end{aligned}\]représenté sous forme d’un produit matriciel:
\[\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21}& a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \Leftrightarrow AX = B.\]Si la matrice \(A\) est inversible (c’est-à-dire \(\det(A) \neq 0\)), alors le système admet une unique solution \((x_1, x_2, \dots, x_n)\) donnée par
\[x_i = \frac{\det(A_i)}{\det(A)}, \quad i = 1, \dots, n,\]où \(A_i\) est la matrice carrée formée en remplaçant la \(i\)-ème colonne de \(A\) par le vecteur \(B\).
Exemple. Résoudre le système suivant à l’aide des formules de Cramer.
\[\begin{aligned} 4x_1 - 3x_2 &= 11 \\ 2x_1 + x_2 &= 3\\ \end{aligned}\]On a \(A = \begin{pmatrix} 4 & -3 \\ 2 & 1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 11 \\ 3 \end{pmatrix}.\)
On calcule \(\det(A) = 4\cdot 1 + 3\cdot 2 = 10 \neq 0\) donc la matrice \(A\) est inversible est le système a une solution unique.
Cette solution est donnée par
\[\begin{aligned} x_1 &= \frac{\det \begin{pmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{pmatrix}}{\Delta} = \frac{\det \begin{pmatrix} 11 & -3 \\ 3 & 1 \end{pmatrix}}{10} = \frac{11\cdot 1 + 3\cdot 3}{10} = 2\\ x_2 &= \frac{\det \begin{pmatrix} a_{11} &b_{1} \\ a_{21} &b_{2} \end{pmatrix}}{\Delta} = \frac{\det \begin{pmatrix} 4 & 11 \\ 2 & 3 \end{pmatrix}}{10} = \frac{4\cdot 3 - 11\cdot 2}{10} = -1. \end{aligned}\]