
Fast algorithms: from type theory to number theory

Luca De Feo

INRIA Saclay, Projet TANC

October 25, 2010
Séminaire Algorithmes

INRIA Rocquencourt, Le Chesnay

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 1 / 45

Elliptic curve cryptography

Weierstrass form: y2 = x3 + ax+ b;

Group law: Chord-tangent;

Crypto: Based on discrete log in E(Fq);

Hasse bound: |#E(Fq) − q− 1| 6 2
√
q.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 2 / 45

Isogenies

Isogenies are group morphisms of
elliptic curves:

I : E→ E ′

I(x,y) =
(
g(x)

h(x)
, cy

(
g(x)

h(x)

) ′)
What do you do with an isogeny over a finite field?

Point counting (Schoof 1995);

Speed up point multiplication (Gallant, Lambert, and Vanstone 2001);

Reduce a Discrete Logarithm Problem to another (Gaudry, Hess, and Smart
2002; Smith 2009);

Construct new cryptosystems (Teske 2006; Rostovtsev and Stolbunov 2006);

Construct hash functions (Charles, Lauter, and Goren 2009).

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 3 / 45

Isogenies: an example

The GHS attack (Gaudry, Hess, and Smart 2002)

E/Fqd

Given an elliptic curve E defined over a composite field Fqd ;

Computes an isogeny to an hyperelliptic curve H defined over Fq.

For certain parameters, the discrete log is easier on H than on E.

A trapdoor cryptosystem (Teske 2006)
Fact: Only a small fraction of the curves over Fqd is vulnerable to GHS

Etrap

Select a curve Etrap vulnerable to GHS;

Take a random walk through the isogeny graph, land on a curve Epub not
vulnerable to GHS;

Use Epub for public key cryptography, give Etrap to a trusted authority for key
escrow.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 4 / 45

Isogenies: an example

The GHS attack (Gaudry, Hess, and Smart 2002)

E/Fqd
I // H/Fq

Given an elliptic curve E defined over a composite field Fqd ;

Computes an isogeny to an hyperelliptic curve H defined over Fq.

For certain parameters, the discrete log is easier on H than on E.

A trapdoor cryptosystem (Teske 2006)
Fact: Only a small fraction of the curves over Fqd is vulnerable to GHS

Etrap

Select a curve Etrap vulnerable to GHS;

Take a random walk through the isogeny graph, land on a curve Epub not
vulnerable to GHS;

Use Epub for public key cryptography, give Etrap to a trusted authority for key
escrow.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 4 / 45

Isogenies: an example

The GHS attack (Gaudry, Hess, and Smart 2002)

E/Fqd
I // H/Fq

Given an elliptic curve E defined over a composite field Fqd ;

Computes an isogeny to an hyperelliptic curve H defined over Fq.

For certain parameters, the discrete log is easier on H than on E.

A trapdoor cryptosystem (Teske 2006)
Fact: Only a small fraction of the curves over Fqd is vulnerable to GHS

Etrap

Select a curve Etrap vulnerable to GHS;

Take a random walk through the isogeny graph, land on a curve Epub not
vulnerable to GHS;

Use Epub for public key cryptography, give Etrap to a trusted authority for key
escrow.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 4 / 45

Isogenies: an example

The GHS attack (Gaudry, Hess, and Smart 2002)

E/Fqd
I // H/Fq

Given an elliptic curve E defined over a composite field Fqd ;

Computes an isogeny to an hyperelliptic curve H defined over Fq.

For certain parameters, the discrete log is easier on H than on E.

A trapdoor cryptosystem (Teske 2006)
Fact: Only a small fraction of the curves over Fqd is vulnerable to GHS

Etrap

((RRRRRR
((RRRRRR88pppppp Epub

Select a curve Etrap vulnerable to GHS;

Take a random walk through the isogeny graph, land on a curve Epub not
vulnerable to GHS;

Use Epub for public key cryptography, give Etrap to a trusted authority for key
escrow.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 4 / 45

Isogenies: an example

The GHS attack (Gaudry, Hess, and Smart 2002)

E/Fqd
I // H/Fq

Given an elliptic curve E defined over a composite field Fqd ;

Computes an isogeny to an hyperelliptic curve H defined over Fq.

For certain parameters, the discrete log is easier on H than on E.

A trapdoor cryptosystem (Teske 2006)
Fact: Only a small fraction of the curves over Fqd is vulnerable to GHS

Etrap

((RRRRRR
((RRRRRR88pppppp Epub

Select a curve Etrap vulnerable to GHS;

Take a random walk through the isogeny graph, land on a curve Epub not
vulnerable to GHS;

Use Epub for public key cryptography, give Etrap to a trusted authority for key
escrow.
Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 4 / 45

Isogenies: a challenge

Let
Fq = F2[Z]/(Z

41 + Z3 + 1)

The following two curves are isogenous:

y2 + xy = x3 + 1/(Z36 +Z35 +Z34 +Z32 +Z31 +Z30 +Z26 +Z23 +Z22 +Z21 +
Z20 + Z18 + Z17 + Z13 + Z12 + Z11 + Z8 + Z7 + Z5 + Z4 + Z2)

y2 + xy = x3 + 1/(Z40 +Z39 +Z38 +Z37 +Z35 +Z34 +Z28 +Z22 +Z15 +Z14 +
Z11 + Z10 + Z9 + Z8 + Z7 + Z6 + Z5 + Z4 + Z)

Can you tell of what degree (i.e. size of the kernel)?

Can you compute the isogeny?

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 5 / 45

Plan

1 Transposition principle

2 Artin-Schreier towers

3 Isogenies

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 6 / 45

The transposition principle

“Let P be an arbitrary set. To any R-algebraic algorithm A
computing a family of linear functions (fp :M→ N)p∈P
corresponds an R-algebraic algorithm A∗ computing the
dual family (f∗p : N∗ →M∗)p∈P. The algebraic time and
space complexities of A∗ are bounded by the time
complexity of A.”

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 7 / 45

The dual of a diagram

A //

f

��

B

��????????

C g
// D

h
// E

⇒
A∗ oo

OO

f∗

B∗ aa

CCCCCCCC

C∗ oo
g∗

D∗ oo
h∗

E∗

Duality and complexity
(f ◦ g ◦ h)∗ = h∗ ◦ g∗ ◦ f∗;
∗ is contravariant;

A classical example is transposition of matrices: (AB)> = B>A>;

From an algorithmic point of view, the number of arrows is a measure of
complexity, and it is preserved under dualization.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 8 / 45

Transposition of arithmetic circuits

Arithmetic circuits are like diagrams enriched
with a product. In particular they can be

transposed:

x1 x2 x3

+ &

+ ∗2

y1 y2

↔

x∗1 x∗2 x∗3

+ &

+ ∗2

y∗1 y∗2

This can be made precise using category theory.

y1 = x1 + 3x2

y2 = x3

(
1 3 0
0 0 1

)

l1 0
3 0
0 1



Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 9 / 45

Transposition of arithmetic circuits

Arithmetic circuits are like diagrams enriched
with a product. In particular they can be

transposed:

x1 x2 x3

+ &

+ ∗2

y1 y2

↔

x∗1 x∗2 x∗3

+ &

+ ∗2

y∗1 y∗2

This can be made precise using category theory.

y1 = x1 + 3x2

y2 = x3

(
1 3 0
0 0 1

)
l1 0

3 0
0 1


Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 9 / 45

Transposition of arithmetic circuits

Arithmetic circuits are like diagrams enriched
with a product. In particular they can be

transposed:

x1 x2 x3

+ &

+ ∗2

y1 y2

↔

x∗1 x∗2 x∗3

& +

& ∗2

y∗1 y∗2

This can be made precise using category theory.

y1 = x1 + 3x2

y2 = x3

(
1 3 0
0 0 1

)
l1 0

3 0
0 1


Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 9 / 45

Transposition of straight line programs

Straight line programs = Arithmetic circuits

a[1] = a[0] + a[1]
a[0] = 0
a[2] = a[1] + a[2]
a[1] = 0
...
a[n-1] = a[n-2] + a[n-1]
a[n-2] = 0

a[n-2] = 0
a[n-2] = a[n-2] + a[n-1]
...
a[1] = 0
a[1] = a[1] + a[2]
a[0] = 0
a[0] = a[0] + a[1]

0 0
...

...
...

0 0
1 1


0 . . . 0 1

... · · ·
...

...
0 . . . 0 1


Programs = Families of straight line programs

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 10 / 45

Automatic transposition?

Algorithms are hard to transpose, transposed algorithms are hard or
impossible to understand;
How to be confident that a transposed algorithm is well implemented if no
one understands it?
When proving programs with a proof assistant, why should we do the work
twice?

Previous work
Originally discovered in electrical network theory by Bordewijk 1957 (only
works for C); some authors attribute the discovery to Tellegen, Bordewijk’s
director, but this is debated;

Fiduccia 1973 and Hopcroft and Musinski 1973: transposition of bilinear
chains, the most complete formulation (non-commutative rings);

Special case of automatic differentiation Baur and Strassen 1983;

In computer algebra, popularized by Shoup, von zur Gathen, Kaltofen,. . .

Bostan, Lecerf, and Schost 2003 improve algorithms for polynomial
evaluation and solve an open question on space complexity.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 11 / 45

Multilinearity

Does it make sense to transpose c := a ∗ b?

x1 x2 x3

∗

∗

y1

x1 x2 x3

∗x1

∗x3

y1

x3 y∗1 x1

∗

∗

x∗2

Most applications require to linearize a multi-linear program.

Can we automatically deduce any possible linearisation of a program?

Type inference systems can help us

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 12 / 45

Linearity inference

Suppose given a type R implementing a ring. We want to define types L (for
linear) and S (for scalar) such that the following equations hold

plus :: L -> L -> L
plus :: S -> S -> S

∀α ∈ {L,S}.α→ α→ α

times :: L -> S -> L
times :: S -> L -> L
times :: S -> S -> S

∀α ∈ {L,S}.α→ S→ α

zero :: L
zero :: S

∀α ∈ {L,S}.α

one :: S

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 13 / 45

Linearity inference

Suppose given a type R implementing a ring. We want to define types L (for
linear) and S (for scalar) such that the following equations hold

plus :: L -> L -> L
plus :: S -> S -> S

∀α ∈ {L,S}.α→ α→ α

times :: L -> S -> L
times :: S -> L -> L
times :: S -> S -> S

∀α ∈ {L,S}.α→ S→ α

zero :: L
zero :: S

∀α ∈ {L,S}.α

one :: S

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 13 / 45

Linearity inference

The solution in Haskell

data L = L R
data S = S R

class Ring r where
zero :: r
(<+>) :: r -> r -> r
neg :: r -> r
(<*>) :: r -> S -> r

one = S oneR
(S a) == (S b) = a == b

To treat times :: S -> L -> L, we extend the Hindley-Milner type inference
to handle lists of acceptable unifications.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 14 / 45

transalpyne1

We are implementing
A Python-like ad-hoc language, compiled/interpreted in Python, featuring:

Algebraic constructs (Rings, Modules, Fields, . . .);

Transposition of multilinear/recursive code;

Parameterizable linearity inference (including commutative multiplication);

Algebraic complexity preserving;

Easily used on top of Computer Algebra Systems that have a Python
interface;

Other Computer Algebra Systems will be able to work with it as we will add
more languages to the output of the compiler (OCaml and Haskell look
easy, C is somewhat harder).

http://transalpyne.gforge.inria.fr/

1Luca De Feo and Éric Schost (2010). “transalpyne: a language for automatic transposition.” In:
SIGSAM Bulletin 44.1/2 , pp. 59–71. URL: http://dx.doi.org/10.1145/1838599.1838624.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 15 / 45

http://transalpyne.gforge.inria.fr/
http://dx.doi.org/10.1145/1838599.1838624

Perspectives

Coding
Integration of automatic transposition in a Computer Algebra System. (Sage?
Mathemagix?)

Arithmetic circuits and categorical semantics
Joint work with M. Boespflug:

We have implemented a Domain Specific Language in Haskell,

the result is not satisfactory due to Haskell’s lack of support for dependent
types.

Automated Theorem Provers
We plan to write a library to ease the use of the transposition principle in
Automated Theorem Provers. (Coq? Agda? Isabelle?)

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 16 / 45

Plan

1 Transposition principle

2 Artin-Schreier towers

3 Isogenies

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 17 / 45

Newton sums

Newton identities
Given a polynomial f =

∏
j(X− αj) ∈ K[X],

The Newton sums are the pi =
∑

j α
i
j for any i > 0

f ′

f
=
∑
i>0

pi

T i+1 ⇔ f = exp
(∫

f ′

f

)
= Td exp

−
∑
i>1

pi

iT i

 .

Trace formulas
Let A = K[X]/f(X), then

pi = TrA/K X
i.

More generally for any a, z ∈ A, with z primitive and g its minimal polynomial

∑
i>0

a · TrA/K z
i

T i+1 =
∑
i>0

TrA/K az
i

T i+1 =
A(T)

g(T)
and a =

A(z)

g ′(z)
.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 18 / 45

Newton sums

Newton identities
Given a polynomial f =

∏
j(X− αj) ∈ K[X],

The Newton sums are the pi =
∑

j α
i
j for any i > 0

f ′

f
=
∑
i>0

pi

T i+1 ⇔ f = exp
(∫

f ′

f

)
= Td exp

−
∑
i>1

pi

iT i

 .

Trace formulas
Let A = K[X]/f(X), then

pi = TrA/K X
i.

More generally for any a, z ∈ A, with z primitive and g its minimal polynomial

∑
i>0

a · TrA/K z
i

T i+1 =
∑
i>0

TrA/K az
i

T i+1 =
A(T)

g(T)
and a =

A(z)

g ′(z)
.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 18 / 45

Shoup’s algorithm (Shoup 1995, 1999)

Polynomial evaluation: k[T]→ K/k

g 7→ g(σ)

Power projection: (K/k)∗ → k[T]∗

` 7→
∑
i>0

`(σi)

T i

Power projection = transposed polynomial evaluation
Let A = K[X]/f(X) and z ∈ A. Take any algorithm that computes g 7→ g(z) and
transpose it:

Apply to TrA/K to compute the characteristic polynomial of z;

Apply to a · TrA/K to compute a representation of a as a univariate
polynomial in z.

The complexity of the original algorithm is preserved by the transposition
principle!

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 19 / 45

Rational Univariate Representation

Generalization in many
variables (Giusti, Lecerf, and
Salvy 2001; Rouillier 1999)
Let A = K[x1, . . . , xn]/I and z ∈ A

g(z) = 0,

x1 =
g1(z)

g(z)
,

...

xn =
gn(z)

g(z)
,

Change of basis
These two operations have the same
cost, by the transposition principle:

Going from the univariate basis

Z = {1, z, . . . , zd−1}

to any basis B is equivalent to
polynomial evaluation in z.

Going from B to Z is
equivalent to Rational
Univariate Representation.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 20 / 45

Application to towers of extension fields

Uk = Uk−1[Xk]
Pk−1(Xk)

p

Uk−1

�
�
�
�
�
�

U1 = U0[X1]
P0(X1)

p

U0 = Fpd =
Fp[X0]
Q(X0)

Change of basis
Z = {1,Xk,X2

k, . . .}
B = {1,Xk−1,Xk−1, . . . ,Xk,Xk−1Xk,X2

k−1Xk, . . .}{
Qk(Xk) = 0
Xk−1 = R(Xk)

Q′k(Xk)

↔

{
Pk−1(Xk,Xk−1) = 0
Qk−1(Xk−1) = 0

Multiplication is faster on Z;

Embeddings are faster on B;

A fast algorithm for Z→ B implies a fast one
for B→ Z.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 21 / 45

Application to Artin-Schreir towers2

Uk = Uk−1[Xk]
Pk−1(Xk)

p

Uk−1

�
�
�

U1 = U0[X1]
P0(X1)

p

U0 = Fpd =
Fp[X0]
Q(X0)

Artin-Schreier extension
L/K of characteristic p such that

L = K[X]/(Xp − X− α).

Our construction
Let x0 = X0 such that TrU0/Fp

(x0) 6= 0, let

P0 = Xp − X− x0

Pi = Xp − X− x2p−1
i

with xi+1 a root of Pi in Ui+1.
This tower is such that xi generates Ui/Fp.

2Luca De Feo and Éric Schost (2009). “Fast arithmetics in Artin-Schreier towers over finite fields.”
In: ISSAC ’09: Proceedings of the 2009 international symposium on Symbolic and algebraic
computation . Seoul, Republic of Korea: ACM, pp. 127–134. URL:
http://dx.doi.org/10.1145/1576702.1576722.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 22 / 45

http://dx.doi.org/10.1145/1576702.1576722

Application to Artin-Schreir towers

The algorithms
All of these operations can be done in quasi-optimal time and space (w.r.t. the
size of Uk):

Minimal polynomials of xi over Fp computed iteratively;

Change Z→ B using a p-ary divide-and-conquer;

Change B→ Z by trace formulas + transposed algorithms;

Fast univariate multiplication via FFT, fast arithmetics (inversion, GCD, . . .);

Traces and pseudotraces, Frobenius morphisms;

Isomorphisms with arbitrary Artin-Schreier towers via Couveignes 2000.

Implementation
C++ with NTL implementation released under GPL:
http://www.lix.polytechnique.fr/~defeo/FAAST/

Port to SAGE one day?

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 23 / 45

http://www.lix.polytechnique.fr/~defeo/FAAST/

Plan

1 Transposition principle

2 Artin-Schreier towers

3 Isogenies

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 24 / 45

Isogenies between elliptic curves

I : E→ E ′

(Separable) isogeny: (separable) non-constant rational morphism preserving the
point at infinity.

Properties
Finite kernel, surjective (in K̄);

Defined by rational fractions with a pole at infinity;

#E(Fqn) = #E ′(Fqn) for every n,

Dual isogeny: [m] = I ◦ Î.

Multiplication

[m] : E(K̄)→ E(K̄)

P 7→ [m]P

ker I = E[m], deg I = m2.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 25 / 45

Isogenies between elliptic curves

I : E→ E ′

(Separable) isogeny: (separable) non-constant rational morphism preserving the
point at infinity.

Properties
Finite kernel, surjective (in K̄);

Defined by rational fractions with a pole at infinity;

#E(Fqn) = #E ′(Fqn) for every n,

Dual isogeny: [m] = I ◦ Î.

Frobenius endomorphism

ϕ : E(K̄)→ E(K̄)

(X, Y) 7→ (Xq, Yq)

kerϕ = {O}, deg I = q.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 25 / 45

Isogenies between elliptic curves

I : E→ E ′

(Separable) isogeny: (separable) non-constant rational morphism preserving the
point at infinity.

Properties
Finite kernel, surjective (in K̄);

Defined by rational fractions with a pole at infinity;

#E(Fqn) = #E ′(Fqn) for every n,

Dual isogeny: [m] = I ◦ Î.

Separable isogeny, odd degree (simplified Weierstrass model)

I(X, Y) =
(
g(X)

h2(X)
, cY

(
g(X)

h2(X)

) ′)
` = deg I = # ker I = 2 degh+ 1 odd.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 25 / 45

Vélu formulas

Vélu 1971 (algebraically closed field)
Given the kernel H, computes I : E→ E/H given by

I(OE) = I(OE/H),

I(P) =

(
x(P) +

∑
Q∈H∗

x(P +Q) − x(Q),y(P) +
∑

Q∈H∗
y(P +Q) − y(Q)

)
.

For p > 3, given h(x) vanishing on H

y2 = f(x) t =
∑

Q∈H∗
f ′(Q), u =

∑
Q∈H∗

2f(Q), w = u+
∑

Q∈H∗
x(Q)f ′(Q),

I(x,y) =
(
g(x)

h(x)
,y
(
g(x)

h(x)

) ′)
avec

g(x)

h(x)
= x+ t

h ′(x)

h(x)
− u

(
h ′(x)

h(x)

) ′

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 26 / 45

Isogeny computation

Given E,E ′, `, compute I : E→ E ′

By Vélu formulas: I(x,y) =
(

g(x)
h(x) , cy

(
g(x)
h(x)

) ′)
, hence

c2(x3 + ax+ b)

(
g(x)

h(x)

) ′2
=

(
g(x)

h(x)

)3

+ a ′
g(x)

h(x)
+ b ′

BMSS algorithm (Bostan, Morain, Salvy, and Schost 2008)

1 Change variables S(x) =
√

h(1/x2)
g(1/x2) ⇔ g(x)

h(x) = 1
S(1/

√
x)2 ;

2 Power series solution of c2(bx6 + ax4 + 1)S ′2 = 1 + a ′S4 + b ′S6;
3 Inverse the change of variables, reconstruct a rational fraction.

Lercier and Sirvent 2008
When p exceeds the precision, a division by zero happens:

Lift E and E ′ in the p-adics while keeping Φ`

(
j(Ẽ), j(Ẽ ′)

)
= 0;

Apply BMSS in Qq.
Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 27 / 45

Couveignes’ algorithms

Idea: Send E[pk] over E ′[pk]

Couveignes 1994

Work in the formal group E of E: a
formal point is a series in a formal
parameter τ;

Fix a precision large enough for
Fq[[τ]] (∼ logp 4`);

Compute a morphism
U(τ) : E→ E ′;

Reconstruct a rational fraction
g(X)
h(X) = 1

U(1/X) ;

If g
h

is an isogeny, done; otherwise
pick another U.

U is uniquely determined by it
action on E[pk] for every k.

Couveignes 1996

Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;

Pick k large enough (k ∼ logp 4`);

Compute P, a generator of E[pk];

Compute P ′, a generator of E ′[pk];

Compute the polynomial T
vanishing E[pk];

Interpolate A : x(P) 7→ x(P ′);

Reconstruct a rational fraction
g
h
≡ A mod T ;

If g
h

is an isogeny, done; otherwise
pick another P ′.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 28 / 45

Couveignes’ algorithms

Idea: Send E[pk] over E ′[pk]

Couveignes 1994

Work in the formal group E of E: a
formal point is a series in a formal
parameter τ;

Fix a precision large enough for
Fq[[τ]] (∼ logp 4`);

Compute a morphism
U(τ) : E→ E ′;

Reconstruct a rational fraction
g(X)
h(X) = 1

U(1/X) ;

If g
h

is an isogeny, done; otherwise
pick another U.

U is uniquely determined by it
action on E[pk] for every k.

Couveignes 1996

Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;

Pick k large enough (k ∼ logp 4`);

Compute P, a generator of E[pk];

Compute P ′, a generator of E ′[pk];

Compute the polynomial T
vanishing E[pk];

Interpolate A : x(P) 7→ x(P ′);

Reconstruct a rational fraction
g
h
≡ A mod T ;

If g
h

is an isogeny, done; otherwise
pick another P ′.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 28 / 45

Couveignes’ algorithms

Idea: Send E[pk] over E ′[pk]

Couveignes 1994

Work in the formal group E of E: a
formal point is a series in a formal
parameter τ;

Fix a precision large enough for
Fq[[τ]] (∼ logp 4`);

Compute a morphism
U(τ) : E→ E ′;

Reconstruct a rational fraction
g(X)
h(X) = 1

U(1/X) ;

If g
h

is an isogeny, done; otherwise
pick another U.

U is uniquely determined by it
action on E[pk] for every k.

Couveignes 1996

Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;

Pick k large enough (k ∼ logp 4`);

Compute P, a generator of E[pk];

Compute P ′, a generator of E ′[pk];

Compute the polynomial T
vanishing E[pk];

Interpolate A : x(P) 7→ x(P ′);

Reconstruct a rational fraction
g
h
≡ A mod T ;

If g
h

is an isogeny, done; otherwise
pick another P ′.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 28 / 45

Fast Couveignes 19963

• Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;

An Artin-Schreir tower: Õ(`)

• Pick k large enough (k ∼ 4`);

• Compute P, a generator of E[pk];

An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute P ′, a generator of E ′[pk];

An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute the polynomial T van-
ishing E[pk];

• Interpolate A : x(P) 7→ x(P ′);

Fast interpolation in towers of exten-
sions: Õ(`)

• Reconstruct a rational fraction
g
h
≡ A mod T ;

XGCD: Õ(`)

• If g
h

is an isogeny, done; otherwise
pick another P ′.

Repeat O(`) times

3Luca De Feo (2010). “Fast algorithms for computing isogenies between ordinary elliptic curves in
small characteristic.” In: Journal of Number Theory . URL:
http://dx.doi.org/10.1016/j.jnt.2010.07.003.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 29 / 45

http://dx.doi.org/10.1016/j.jnt.2010.07.003

Fast Couveignes 19963

• Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;
An Artin-Schreir tower: Õ(`)

• Pick k large enough (k ∼ 4`);

• Compute P, a generator of E[pk];

An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute P ′, a generator of E ′[pk];

An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute the polynomial T van-
ishing E[pk];

• Interpolate A : x(P) 7→ x(P ′);

Fast interpolation in towers of exten-
sions: Õ(`)

• Reconstruct a rational fraction
g
h
≡ A mod T ;

XGCD: Õ(`)

• If g
h

is an isogeny, done; otherwise
pick another P ′.

Repeat O(`) times

3Luca De Feo (2010). “Fast algorithms for computing isogenies between ordinary elliptic curves in
small characteristic.” In: Journal of Number Theory . URL:
http://dx.doi.org/10.1016/j.jnt.2010.07.003.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 29 / 45

http://dx.doi.org/10.1016/j.jnt.2010.07.003

Fast Couveignes 19963

• Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;
An Artin-Schreir tower: Õ(`)

• Pick k large enough (k ∼ 4`);

• Compute P, a generator of E[pk];
An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute P ′, a generator of E ′[pk];
An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute the polynomial T van-
ishing E[pk];

• Interpolate A : x(P) 7→ x(P ′);

Fast interpolation in towers of exten-
sions: Õ(`)

• Reconstruct a rational fraction
g
h
≡ A mod T ;

XGCD: Õ(`)

• If g
h

is an isogeny, done; otherwise
pick another P ′.

Repeat O(`) times

3Luca De Feo (2010). “Fast algorithms for computing isogenies between ordinary elliptic curves in
small characteristic.” In: Journal of Number Theory . URL:
http://dx.doi.org/10.1016/j.jnt.2010.07.003.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 29 / 45

http://dx.doi.org/10.1016/j.jnt.2010.07.003

Fast Couveignes 19963

• Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;
An Artin-Schreir tower: Õ(`)

• Pick k large enough (k ∼ 4`);

• Compute P, a generator of E[pk];
An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute P ′, a generator of E ′[pk];
An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute the polynomial T van-
ishing E[pk];

• Interpolate A : x(P) 7→ x(P ′);
Fast interpolation in towers of exten-
sions: Õ(`)

• Reconstruct a rational fraction
g
h
≡ A mod T ;

XGCD: Õ(`)

• If g
h

is an isogeny, done; otherwise
pick another P ′.

Repeat O(`) times

3Luca De Feo (2010). “Fast algorithms for computing isogenies between ordinary elliptic curves in
small characteristic.” In: Journal of Number Theory . URL:
http://dx.doi.org/10.1016/j.jnt.2010.07.003.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 29 / 45

http://dx.doi.org/10.1016/j.jnt.2010.07.003

Fast Couveignes 19963

• Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;
An Artin-Schreir tower: Õ(`)

• Pick k large enough (k ∼ 4`);

• Compute P, a generator of E[pk];
An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute P ′, a generator of E ′[pk];
An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute the polynomial T van-
ishing E[pk];

• Interpolate A : x(P) 7→ x(P ′);
Fast interpolation in towers of exten-
sions: Õ(`)

• Reconstruct a rational fraction
g
h
≡ A mod T ; XGCD: Õ(`)

• If g
h

is an isogeny, done; otherwise
pick another P ′.

Repeat O(`) times

3Luca De Feo (2010). “Fast algorithms for computing isogenies between ordinary elliptic curves in
small characteristic.” In: Journal of Number Theory . URL:
http://dx.doi.org/10.1016/j.jnt.2010.07.003.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 29 / 45

http://dx.doi.org/10.1016/j.jnt.2010.07.003

Fast Couveignes 19963

• Compute the extensions Ui/Fq

such that E[pi] is defined in Ui;
An Artin-Schreir tower: Õ(`)

• Pick k large enough (k ∼ 4`);

• Compute P, a generator of E[pk];
An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute P ′, a generator of E ′[pk];
An isomorphism of Artin-Schreier
towers: Õ(`)

• Compute the polynomial T van-
ishing E[pk];

• Interpolate A : x(P) 7→ x(P ′);
Fast interpolation in towers of exten-
sions: Õ(`)

• Reconstruct a rational fraction
g
h
≡ A mod T ; XGCD: Õ(`)

• If g
h

is an isogeny, done; otherwise
pick another P ′.

Repeat O(`) times

3Luca De Feo (2010). “Fast algorithms for computing isogenies between ordinary elliptic curves in
small characteristic.” In: Journal of Number Theory . URL:
http://dx.doi.org/10.1016/j.jnt.2010.07.003.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 29 / 45

http://dx.doi.org/10.1016/j.jnt.2010.07.003

How to recognize an isogeny?

Degree: g
h

with degg = `, degh = `− 1; O(1)

Square factor: h =
∏

Q∈H∗(X− x(Q)) = f2 if ` odd; Õ(`)

Group action: Test with random points; O(`)

Factor of the `-division polynomial: Compute φ` mod h. Õ(`)

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 30 / 45

How to recognize an isogeny?

AUi + TVi = Ri ⇔ A ≡ Ri

Ui
mod T

` = 11

degRi degUi

3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2

...
...

3141592653589793238462634 9

11 10
10 3141592653589793238462633
...

...

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 31 / 45

How to recognize an isogeny?

AUi + TVi = Ri ⇔ A ≡ Ri

Ui
mod T

` = 11

degRi degUi

3141592653589793238462643 0

3141592653589793238462642 1
3141592653589793238462641 2

...
...

3141592653589793238462634 9

11 10
10 3141592653589793238462633
...

...

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 31 / 45

How to recognize an isogeny?

AUi + TVi = Ri ⇔ A ≡ Ri

Ui
mod T

` = 11

degRi degUi

3141592653589793238462643 0
3141592653589793238462642 1

3141592653589793238462641 2
...

...
3141592653589793238462634 9

11 10
10 3141592653589793238462633
...

...

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 31 / 45

How to recognize an isogeny?

AUi + TVi = Ri ⇔ A ≡ Ri

Ui
mod T

` = 11

degRi degUi

3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2

...
...

3141592653589793238462634 9

11 10
10 3141592653589793238462633
...

...

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 31 / 45

How to recognize an isogeny?

AUi + TVi = Ri ⇔ A ≡ Ri

Ui
mod T

` = 11

degRi degUi

3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2

...
...

3141592653589793238462634 9

11 10
10 3141592653589793238462633
...

...

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 31 / 45

How to recognize an isogeny?

AUi + TVi = Ri ⇔ A ≡ Ri

Ui
mod T

` = 11

degRi degUi

3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2

...
...

3141592653589793238462634 9

11 10
10 3141592653589793238462633
...

...

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 31 / 45

How to recognize an isogeny?

AUi + TVi = Ri ⇔ A ≡ Ri

Ui
mod T

` = 11

degRi degUi

3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2

...
...

3141592653589793238462634 9

11 10

10 3141592653589793238462633
...

...

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 31 / 45

How to recognize an isogeny?

AUi + TVi = Ri ⇔ A ≡ Ri

Ui
mod T

` = 11

degRi degUi

3141592653589793238462643 0
3141592653589793238462642 1
3141592653589793238462641 2

...
...

3141592653589793238462634 9

11 10
10 3141592653589793238462633
...

...

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 31 / 45

Isogenies of unknown degree

This pattern is extremely rare.

This is the only phase of Couveignes’ algorithms that depends on `.

Actually, this does not really depend on `, just on the existence
of a gap.
If ` is not known in advance, it is enough to look for a gap.
Thus, any isogeny of degree� pk can be obtained with one
single run of Couveignes’ algorithms.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 32 / 45

Isogenies of unknown degree

This pattern is extremely rare.

This is the only phase of Couveignes’ algorithms that depends on `.

Actually, this does not really depend on `, just on the existence
of a gap.
If ` is not known in advance, it is enough to look for a gap.
Thus, any isogeny of degree� pk can be obtained with one
single run of Couveignes’ algorithms.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 32 / 45

Perspectives

Looking for the quasi-linear complexity
The Weierstrass model has a canonicity defect: use other parameterizations?
Formal groups?

How to obtain local information on the behavior of the isogeny? (for
example, its action on E[p])

Isogenies of unknown degree
This variant of Couveignes 1996 is at the moment the fastest (both in theory
and in practice) algorithm for this task.

We tested two curves over F2161 , isogenous of unknown degree, taken from
Teske 2006;

Certified in 258 cpu-hours that no isogeny of degree 2c` for any c and
` < 211 exists;

Certified in 1195 cpu-hours that no isogeny of degree les then 212 exists.

The two curves have an isogeny of (very smooth) degree ∼ 21050. Proving
that no isogeny of smaller degree exists is momentarily out of reach.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 33 / 45

Z’en voulez plus?

Fast Algorithms for Towers of Finite Fields and Isogenies

13 décembre, École Polytechnique
heure et amphi à préciser

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 34 / 45

References I

Fiduccia, Charles M. (1973).
“On the algebraic complexity of matrix multiplication.”
PhD thesis. Providence, RI, USA: Brown University.
URL: http://portal.acm.org/citation.cfm?id=906618.

Couveignes, Jean-Marc (1994).
“Quelques calculs en théorie des nombres.”
PhD thesis. Université de Bordeaux.

Schoof, René (1995).
“Counting points on elliptic curves over finite fields.”
In: Journal de Théorie des Nombres de Bordeaux 7.1 ,
Pp. 219–254.
URL: http://www.ams.org/mathscinet-getitem?mr=1413578.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 35 / 45

http://portal.acm.org/citation.cfm?id=906618
http://www.ams.org/mathscinet-getitem?mr=1413578

References II

Gallant, Robert P., Robert J. Lambert, and Scott A. Vanstone (2001).
“Faster Point Multiplication on Elliptic Curves with Efficient
Endomorphisms.”
In: CRYPTO ’01: Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology .
London, UK: Springer-Verlag,
Pp. 190–200.
URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.2004.

Gaudry, Pierrick, Florian Hess, and Niegel Smart (2002).
“Constructive and destructive facets of Weil descent on elliptic curves.”
In: Journal of Cryptology 15.1 ,
Pp. 19–46–46.
URL: http://dx.doi.org/10.1007/s00145-001-0011-x.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 36 / 45

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.2004
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.2004
http://dx.doi.org/10.1007/s00145-001-0011-x

References III

Smith, Benjamin (2009).
“Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3
Hyperelliptic Curves.”
In: Journal of Cryptology 22.4 ,
Pp. 505–529–529.
URL: http://dx.doi.org/10.1007/s00145-009-9038-1.

Teske, Edlyn (2006).
“An Elliptic Curve Trapdoor System.”
In: Journal of Cryptology 19.1 ,
Pp. 115–133.
URL: http://dx.doi.org/10.1007/s00145-004-0328-3.

Rostovtsev, Alexander and Anton Stolbunov (2006).
Public-key Cryptosystem Based On Isogenies .
URL: http://eprint.iacr.org/2006/145.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 37 / 45

http://dx.doi.org/10.1007/s00145-009-9038-1
http://dx.doi.org/10.1007/s00145-004-0328-3
http://eprint.iacr.org/2006/145

References IV

Charles, Denis, Kristin Lauter, and Eyal Goren (2009).
“Cryptographic Hash Functions from Expander Graphs.”
In: Journal of Cryptology 22.1 ,
Pp. 93–113.
URL: http://dx.doi.org/10.1007/s00145-007-9002-x.

Bordewijk, J. (1957).
“Inter-reciprocity applied to electrical networks.”
In: Applied Scientific Research, Section B 6.1 ,
Pp. 1–74.
URL: http://dx.doi.org/10.1007/BF02920362.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 38 / 45

http://dx.doi.org/10.1007/s00145-007-9002-x
http://dx.doi.org/10.1007/BF02920362

References V

Hopcroft, John E. and Jean Musinski (1973).
“Duality applied to the complexity of matrix multiplications and other
bilinear forms.”
In: STOC ’73: Proceedings of the fifth annual ACM symposium on Theory
of computing .
Austin, Texas, United States: ACM,
Pp. 73–87.
URL: http://dx.doi.org/10.1145/800125.804038.

Baur, Walter and Volker Strassen (1983).
“The complexity of partial derivatives.”
In: Theoretical Computer Science 22.3 ,
Pp. 317–330.
URL: http://dx.doi.org/10.1016/0304-3975(83)90110-X.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 39 / 45

http://dx.doi.org/10.1145/800125.804038
http://dx.doi.org/10.1016/0304-3975(83)90110-X

References VI

Bostan, Alin, Grégoire Lecerf, and Éric Schost (2003).
“Tellegen’s principle into practice.”
In: ISSAC ’03: Proceedings of the 2003 international symposium on
Symbolic and algebraic computation .
Philadelphia, PA, USA: ACM,
Pp. 37–44.
URL: http://dx.doi.org/10.1145/860854.860870.

De Feo, Luca and Éric Schost (2010).
“transalpyne: a language for automatic transposition.”
In: SIGSAM Bulletin 44.1/2 ,
Pp. 59–71.
URL: http://dx.doi.org/10.1145/1838599.1838624.

Shoup, Victor (1995).
“A new polynomial factorization algorithm and its implementation.”
In: Journal of Symbolic Computation 20.4 ,
Pp. 363–397.
URL: http://dx.doi.org/10.1006/jsco.1995.1055.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 40 / 45

http://dx.doi.org/10.1145/860854.860870
http://dx.doi.org/10.1145/1838599.1838624
http://dx.doi.org/10.1006/jsco.1995.1055

References VII

Shoup, Victor (1999).
“Efficient computation of minimal polynomials in algebraic extensions of
finite fields.”
In: ISSAC ’99: Proceedings of the 1999 international symposium on
Symbolic and algebraic computation .
Vancouver, British Columbia, Canada: ACM,
Pp. 53–58.
URL: http://dx.doi.org/10.1145/309831.309859.

Giusti, Marc, Grégoire Lecerf, and Bruno Salvy (2001).
“A Gröbner free alternative for polynomial system solving.”
In: Journal of Complexity 17.1 ,
Pp. 154–211.
URL: http://dx.doi.org/10.1006/jcom.2000.0571.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 41 / 45

http://dx.doi.org/10.1145/309831.309859
http://dx.doi.org/10.1006/jcom.2000.0571

References VIII

Rouillier, Fabrice (1999).
“Solving Zero-Dimensional Systems Through the Rational Univariate
Representation.”
In: Applicable Algebra in Engineering, Communication and Computing 9.5
,
Pp. 433–461.
URL: http://dx.doi.org/10.1007/s002000050114.

De Feo, Luca and Éric Schost (2009).
“Fast arithmetics in Artin-Schreier towers over finite fields.”
In: ISSAC ’09: Proceedings of the 2009 international symposium on
Symbolic and algebraic computation .
Seoul, Republic of Korea: ACM,
Pp. 127–134.
URL: http://dx.doi.org/10.1145/1576702.1576722.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 42 / 45

http://dx.doi.org/10.1007/s002000050114
http://dx.doi.org/10.1145/1576702.1576722

References IX

Couveignes, Jean-Marc (2000).
“Isomorphisms between Artin-Schreier towers.”
In: Mathematics of Computation 69.232 ,
Pp. 1625–1631.
URL: http://dx.doi.org/10.1090/S0025-5718-00-01193-5.

Vélu, Jean (1971).
“Isogénies entre courbes elliptiques.”
In: Comptes Rendus de l’Académie des Sciences de Paris 273 ,
Pp. 238–241.

Bostan, Alin, François Morain, Bruno Salvy, and Éric Schost (2008).
“Fast algorithms for computing isogenies between elliptic curves.”
In: Mathematics of Computation 77 ,
Pp. 1755–1778.
URL: http://dx.doi.org/10.1090/S0025-5718-08-02066-8.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 43 / 45

http://dx.doi.org/10.1090/S0025-5718-00-01193-5
http://dx.doi.org/10.1090/S0025-5718-08-02066-8

References X

Lercier, Reynald and Thomas Sirvent (2008).
“On Elkies subgroups of `-torsion points in elliptic curves defined over a
finite field.”
In: Journal de théorie des nombres de Bordeaux 20.3 ,
Pp. 783–797.
URL:
http://perso.univ-rennes1.fr/reynald.lercier/file/LS08.pdf.

Couveignes, Jean-Marc (1996).
“Computing l-Isogenies Using the p-Torsion.”
In: ANTS-II: Proceedings of the Second International Symposium on
Algorithmic Number Theory .
London, UK: Springer-Verlag,
Pp. 59–65.
URL: http://portal.acm.org/citation.cfm?id=749581.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 44 / 45

http://perso.univ-rennes1.fr/reynald.lercier/file/LS08.pdf
http://portal.acm.org/citation.cfm?id=749581

References XI

De Feo, Luca (2010).
“Fast algorithms for computing isogenies between ordinary elliptic curves
in small characteristic.”
In: Journal of Number Theory .
URL: http://dx.doi.org/10.1016/j.jnt.2010.07.003.

Luca De Feo (INRIA Saclay) Fast algorithms: from type theory to number theory INRIA Rocquencourt, October 25, 2010 45 / 45

http://dx.doi.org/10.1016/j.jnt.2010.07.003

	Transposition principle
	Artin-Schreier towers
	Isogenies
	References
	References

