Fast arithmetics in Artin-Schreier towers over finite fields

Luca De Feo1

joint work with É. Schost2

1École Polytechnique and INRIA, France
2ORCCA and CSD, The University of Western Ontario, London, ON

October 10, 2009
RAIM, École Normale Supérieure, Lyon
Doing arithmetics in towers of extensions

Standard arithmetics

\[
\begin{align*}
+,-,\times,/ & : \\
(\mathbb{U}_i \times \mathbb{U}_i) & \rightarrow \mathbb{U}_i \\
(u, v) & \mapsto u \text{ op } v
\end{align*}
\]
Doing arithmetics in towers of extensions

Inclusion

\[\imath : \begin{cases} \mathcal{U}_i & \subset & \mathcal{U}_{i+1} \\ u & \mapsto & \overline{u} \end{cases} \]
Doing arithmetics in towers of extensions

Membership

\[\ell^{-1} : \left\{ \begin{array}{c}
U_{i+1} \supseteq U_i \\
\ell(v) \mapsto v
\end{array} \right. \]
Doing arithmetics in towers of extensions

Projection

\[
\begin{align*}
\pi &: \left\{ \begin{array}{c}
U_{i+1} \sim U_i^p \simeq U_i[\gamma] \\
v &\mapsto (v_0, \ldots, v_{p-1})
\end{array} \right.
\end{align*}
\]

\[
\pi^{-1} : \left\{ \begin{array}{c}
U_i^p \simeq U_i[\gamma] &\sim \to U_{i+1} \\
(v_0, \ldots, v_{p-1}) &\mapsto \sum_j v_j \gamma^j
\end{array} \right.
\]
Doing arithmetics in towers of extensions

\[\mathbb{U}_k \quad \mathbb{U}_{k-1} \quad \mathbb{U}_2 \quad \mathbb{U}_1 \quad \mathbb{F}_q \]

Traces

\[\text{Tr} : \begin{cases}
\mathbb{U}_{i+1} & \rightarrow & \mathbb{U}_i \\
\nu & \mapsto & \text{Tr}(\nu)
\end{cases} \]
Doing arithmetics in towers of extensions

\[\mathbb{U}_k \quad p \quad \mathbb{U}_{k-1} \quad p \quad \mathbb{U}_2 \quad p \quad \mathbb{U}_1 \quad p \quad \mathbb{F}_q \]

Galois action

\[\varphi : \begin{cases} G \times \mathbb{U}_i & \rightarrow \mathbb{U}_i \\ (\sigma, v) & \mapsto \sigma(v) \end{cases} \]

\[G := \text{Gal}(\mathbb{U}_{i+1}/\mathbb{U}_i) \cong \mathbb{Z}/p\mathbb{Z} \]
Crypto application: Isogeny computation

\[\mathbb{U}_{16} \leftarrow - E[2^{18}] \]
\[\mathbb{U}_{15} \leftarrow - E[2^{17}] \]
\[\mathbb{U}_{2} \leftarrow - E[16] \]
\[\mathbb{U}_{1} \leftarrow - E[8] \]
\[\mathbb{F}_q \leftarrow - E[4] \]

\[E, E' \text{ elliptic curves with } \#E(F_q) = \#E'(F_q) \]

Theorem/Algorithm

Knowing \(E[2^{k+3}] \) and \(E'[2^{k+3}] \)

\[\Rightarrow \text{all isogenies of degree } < 2^k \]

Example

- \(\mathbb{F}_q = \mathbb{F}_{2^{163}} \),
- \(E[4] \subset E(\mathbb{F}_q), \ E[2^{i+2}] \subset E(\mathbb{U}_i) \),
- Isogeny degree \(< 2^{15} \Rightarrow 16 \text{ levels}!! \)
- One element of \(\mathbb{U}_{16} \sim 1.5\text{MB}!! \)
Our context

\[U_k = \frac{U_{k-1}[X_k]}{P_{k-1}(X_k)} \]

Tower over finite fields

\[P_i \text{ irreducible polynomial in } U_i[X] \]
Our context

\[\mathbb{U}_k = \frac{\mathbb{U}_{k-1}[X_k]}{P_{k-1}(X_k)} \]

\[p \]

\[\mathbb{U}_{k-1} \]

Tower over finite fields

\[P_i \text{ irreducible polynomial in } \mathbb{U}_i[X] \]

But this is too hard.
Artin-Schreier

Definition (Artin-Schreier polynomial)

\(K \) a field of characteristic \(p \), \(\alpha \in K \)

\[X^p - X - \alpha \]

is an Artin-Schreier polynomial.

Theorem

\(K \) finite. \(X^p - X - \alpha \) irreducible \(\iff \) \(\text{Tr}_{K/F_p}(\alpha) \neq 0 \).

If \(\eta \in K \) is a root, then \(\eta + 1, \ldots, \eta + (p - 1) \) are roots.

Definition (Artin-Schreier extension)

\(P \) an irreducible Artin-Schreier polynomial.

\[L = K[X]/P(X). \]

\(L/K \) is called an Artin-Schreier extension.
Our context

\[\mathbb{U}_k = \frac{\mathbb{U}_{k-1}[X_k]}{P_{k-1}(X_k)} \]

\[p \]

\[\mathbb{U}_{k-1} \]

\[\mathbb{U}_1 = \frac{\mathbb{U}_0[X_1]}{P_0(X_1)} \]

\[p \]

\[\mathbb{U}_0 = \mathbb{F}_{p^d} = \frac{\mathbb{F}_p[X_0]}{Q(X_0)} \]

Towers over finite fields

\[P_i = X^p - X - \alpha_i \]

We say that \((\mathbb{U}_0, \ldots, \mathbb{U}_k)\) is defined by \((\alpha_0, \ldots, \alpha_{k-1})\) over \(\mathbb{U}_0\).

ANY separable extension of degree \(p\) can be expressed this way.
Size, complexities

\[\# \mathbb{U}_i = p^{p^i d} \]

Optimal representation

All common representations achieve it: \(O(p^i d) \)

Complexities

- **optimal:** \(O(p^i d) \) addition
- **quasi-optimal:** \(\tilde{O}(i^a p^i d) \) FFT multiplication
- **almost-optimal:** \(\tilde{O}(i^a p^{i+b} d) \)
- **suboptimal:** \(\tilde{O}(i^a (p^{i+b})^d d^c) \)
- **too bad:** \(\tilde{O}(i^a (p^{i+b})^e d^c) \) naive multiplication

Multiplication function \(M(n) \)

- **FFT:** \(M(n) = O(n \log n \log \log n) \),
- **Naive:** \(M(n) = O(n^2) \).
1 Representation

2 More arithmetics

3 Implementation and benchmarks
Representation matters!

Multivariate representation of \(v \in \mathbb{U}_i \)

\[
v = X_0^{d-1}X_1^{p-1} \cdots X_i^{p-1} + 2X_0^{d-1}X_1^{p-1} \cdots X_i^{p-2} + \cdots
\]

Univariate representation of \(v \in \mathbb{U}_i \)

- \(\mathbb{U}_i = \mathbb{F}_p[x_i] \),
- \(v = c_0 + c_1 x_i + c_2 x_i^2 + \cdots + c_{p^i d-1} x_i^{p^i d-1} \) with \(c_i \in \mathbb{F}_p \).

How much does it cost to...

- Multiply?
- Express the embedding \(\mathbb{U}_{i-1} \subset \mathbb{U}_i \)?
- Express the vector space isomorphism \(\mathbb{U}_i = \mathbb{U}_i^p \)?
- Switch between the representations?
A primitive tower

Definition (Primitive tower)

A tower is primitive if $U_i = \mathbb{F}_p[X_i]$. In general this is not the case. Think of $P_0 = X^p - X - 1$.

Theorem (extends a result in [Cantor '89])

Let $x_0 = X_0$ such that $\text{Tr}_{U_0/\mathbb{F}_p}(x_0) \neq 0$, let

\[
\begin{align*}
P_0 &= X^p - X - x_0 \\
P_i &= X^p - X - x_i^{2p-1}
\end{align*}
\]

with x_{i+1} a root of P_i in U_{i+1}. Then, the tower defined by (P_0, \ldots, P_{k-1}) is primitive.

Some tricks to play when $p = 2$.

L. De Feo (École Polytechnique) Fast arithmetics in Artin-Schreier towers RAIM, October 10, 2009 10 / 30
Computing the minimal polynomials

We look for Q_i, the minimal polynomial of x_i over \mathbb{F}_p

Algorithm [Cantor ’89]

- $Q_0 = Q$ easy,
- $Q_1 = Q_0(X^p - X)$ easy,

Let ω be a $2p - 1$-th root of unity,

- $q_{i+1}(X^{2p-1}) = \prod_{j=0}^{2p-2} Q_i(\omega^j X)$ not too hard,
- $Q_{i+1} = q_{i+1}(X^p - X)$ easy.

Complexity

$O(M(p^{i+2}d) \log p)$
Yes, we can multiply!

Standard arithmetics

\[
\begin{align*}
&\mathbb{U}_k \\
&\downarrow p \\
&\mathbb{U}_{k-1} \\
&\downarrow p \\
&\mathbb{U}_2 \\
&\downarrow p \\
&\mathbb{U}_1 \\
&\downarrow p \\
&\mathbb{F}_q
\end{align*}
\]

\[\begin{align*}
+,-,\times,\div : \left\{ \begin{array}{c}
\mathbb{U}_i \times \mathbb{U}_i
\rightarrow \mathbb{U}_i \\
(u,v) \mapsto u \text{ op } v
\end{array} \right.
\]
Outline

1 Representation

2 More arithmetics

3 Implementation and benchmarks
Level embedding

$$\pi : \begin{cases} U_{i+1} & \sim \rightarrow U_i^p \simeq U_i[\gamma] \\ U_i & \mapsto \rightarrow (v_0, \ldots, v_{p-1}) \end{cases}$$

$$\pi^{-1} : \begin{cases} U_i^p \simeq U_i[\gamma] & \sim \rightarrow U_{i+1} \\ (v_0, \ldots, v_{p-1}) & \mapsto \sum_j v_j \gamma^j$$
Level embedding

Push-down

Input \(v \in \mathbb{U}_i \),

Output \(v_0, \ldots, v_{p-1} \in \mathbb{U}_{i-1} \) such that \(v = v_0 + \cdots + v_{p-1} x_i^{p-1} \).

Lift-up

Input \(v_0, \ldots, v_{p-1} \in \mathbb{U}_{i-1} \),

Output \(v \in \mathbb{U}_i \) such that \(v = v_0 + \cdots + v_{p-1} x_i^{p-1} \).

Complexity function \(L(i) \)

It turns out that the two operations lie in the same complexity class, we note \(L(i) \) for it:

\[
L(i) = O(p M(p^i d) + p^{i+1} d \log_p (p^i d)^2)
\]
Push-down

Input $v \vdash U_i$,
Output $v_0, \ldots, v_{p-1} \vdash U_{i-1}$ s.t. $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$.

1. Reduce v modulo $x_i^p - x_i - x_{i-1}^{2p-1}$ by a divide-and-conquer approach,
2. each of the coefficients of x_i has degree in x_{i-1} less than $2 \deg_{x_i}(v)$,
3. reduce each of the coefficients.
Lift-up

Theorem

Up to some simple formulae:

\[
\begin{pmatrix}
\pi^{-1} \\
v
\end{pmatrix}
\sim
\begin{pmatrix}
\pi^T \\
M_v^T \\
\text{Tr}^T
\end{pmatrix}
\]

Transposed algorithms (see [Bürgisser, Clausen and Shokrollahi ’97])

- Tr can be easily computed through the residue formula.
- Linear algorithms can be transposed much like linear applications;
- computing \(v \cdot \text{Tr} := (M_v)(\text{Tr}^T) \) is transposed multiplication.
- Computing \(\pi^T \) is transposed push-down.
Theorem

Up to some simple formulae:

\[
\begin{pmatrix}
\pi^{-1}
\end{pmatrix}
\begin{pmatrix}
v
\end{pmatrix}
\sim
\begin{pmatrix}
\pi^T
\end{pmatrix}
\begin{pmatrix}
M_v^T
\end{pmatrix}
\begin{pmatrix}
\text{Tr}^T
\end{pmatrix}
\]

Transposed algorithms (see [Bürgisser, Clausen and Shokrollahi '97])

- Tr can be easily computed through the *residue formula*.
- *Linear algorithms* can be *transposed* much like linear applications;
- computing \(v \cdot \text{Tr} := (M_v)(\text{Tr}^T) \) is *transposed multiplication*.
- Computing \(\pi^T \) is *transposed push-down*.
Lift-up

Theorem

Up to some simple formulae:

\[
\begin{pmatrix}
\pi^{-1}
\end{pmatrix}
\begin{pmatrix} v \end{pmatrix}
\sim
\begin{pmatrix}
\pi^T
\end{pmatrix}
\begin{pmatrix}
M^T_v
\end{pmatrix}
\begin{pmatrix}
\text{Tr}^T
\end{pmatrix}
\]

Transposed algorithms (see [Bürgisser, Clausen and Shokrollahi '97])

- Tr can be easily computed through the *residue formula*.
- *Linear algorithms* can be *transposed* much like linear applications;
- computing \(v \cdot \text{Tr} := (M_v)(\text{Tr}^T) \) is *transposed multiplication*.
- Computing \(\pi^T \) is *transposed push-down*.
Lift-up

Theorem

Up to some simple formulae:

\[
\begin{pmatrix}
\pi^{-1}
\end{pmatrix}
\begin{pmatrix} v \\
\end{pmatrix}
\sim
\begin{pmatrix} \pi^T \\
\end{pmatrix}
\begin{pmatrix} M_v^T \\
\end{pmatrix}
\begin{pmatrix} \text{Tr}^T \\
\end{pmatrix}
\]

Transposed algorithms (see [Bürgisser, Clausen and Shokrollahi '97])

- Tr can be easily computed through the residue formula.
- Linear algorithms can be transposed much like linear applications;
- computing $v \cdot \text{Tr} := (M_v)(\text{Tr}^T)$ is transposed multiplication.
- Computing π^T is transposed push-down.
Lift-up

\begin{itemize}
\item Input $v_0, \ldots, v_{p-1} \vdash \mathbb{U}_{i-1}$
\item Output $v \vdash \mathbb{U}_i$ s.t. $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$
\begin{enumerate}
\item Compute the linear form $\text{Tr} \in \mathbb{U}_i^{D^*}$,
\item compute $\ell = (v_0 + \cdots + v_{p-1}x_i^{p-1}) \cdot \text{Tr}$,
\item compute $P_v = \text{Push-down}^T(\ell)$,
\item compute $N_v(Z) = P_v(Z) \cdot \text{rev}(Q_i)(Z) \mod Z^{p_i d - 1}$,
\item return $\text{rev}(N_v)/Q'_i \mod Q_i$.
\end{enumerate}
\end{itemize}
Speeding up some arithmetics

Galois action

\[\varphi : \begin{cases} \mathcal{G} \times \mathbb{U}_i & \to \mathbb{U}_i \\ (\sigma, v) & \mapsto \sigma(v) \end{cases} \]

\[\mathcal{G} := \text{Gal}(\mathbb{U}_{i+1}/\mathbb{U}_i) \simeq \mathbb{Z}/p\mathbb{Z} \]
Speeding up some arithmetics

Divide and conquer

We improve some operations in \mathbb{U}_i using $\text{op}(v)$

Where it works

- traces,
- p-th roots,
- pseudotraces,
- inversion,
- Galois action,
- ...
Speeding up some arithmetics

Divide and conquer

We improve some operations in \mathbb{U}_i

- push-down the operands;

$\text{op}(v)$

\downarrow

v_0, \cdots, v_{p-1}

Where it works

- traces,
- p-th roots,
- pseudotraces,
- inversion,
- Galois action,
- \ldots
Divide and conquer

We improve some operations in \mathbb{U}_i:

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1};
- lift-up.

\[
\begin{align*}
\mathbb{U}_k & \quad \text{op}(v) \\
\mathbb{U}_{k-1} & \quad \text{op}(v_0), \ldots, \text{op}(v_{p-1}) \\
\mathbb{U}_1 & \\
\mathbb{U}_0 & \\
\end{align*}
\]

Where it works

- traces,
- p-th roots,
- pseudotratces,
- inversion,
- Galois action,
- \ldots
Speeding up some arithmetics

Divide and conquer

We improve some operations in \(\mathbb{U}_i \)

- push-down the operands;
- recursively solve \(p \) instances in \(\mathbb{U}_{i-1} \);
- combine the results;

\[
\begin{align*}
\mathbb{U}_k & \quad \mathbb{U}_{k-1} \\
\mathbb{U}_1 & \quad \mathbb{U}_0 \\
\text{op}(v) & \quad \text{op}(v_0), \ldots, \text{op}(v_{p-1}) \\
w_0, \ldots, w_{p-1} & \quad w_0, \ldots, w_{p-1}
\end{align*}
\]

Where it works

- traces,
- \(p \)-th roots,
- pseudotraces,
- inversion,
- Galois action,
- \(\ldots \)
Speeding up some arithmetics

Divide and conquer

We improve some operations in U_i

- push-down the operands;
- recursively solve p instances in U_{i-1};
- combine the results;
- lift-up.

Where it works

- traces,
- p-th roots,
- pseudotraces,
- inversion,
- Galois action,
- ...
Important application: Isomorphisms with generic towers

Generic towers
- Let \((\alpha_0, \ldots, \alpha_{k-1})\) define a generic tower over \(U_0\),
- if we find an isomorphism we can bring fast arithmetics to it.

Computing the isomorphism [Couveignes '00]

Goal: factor \(X^p - X - \alpha_i\) in \(U_{i+1}\).
- Change of variables \(X' = X - \mu\) s.t.
- \(X'^p - X' - \alpha_i\) has a root in \(U_i\),
- Push-down, solve recursively, result is \(\Delta\),
- Lift-up \(\Delta\),
- return \(\Delta + \mu\).
Outline

1. Representation

2. More arithmetics

3. Implementation and benchmarks
Implementation in NTL + gf2x

Three types

- **GF2**: \(p = 2 \), FFT, bit optimisation,
- **zz_p**: \(p < 2^{\text{long}} \), FFT, no bit-tricks,
- **ZZ_p**: generic \(p \), like zz_p but slower.

Comparison to Magma

Three ways of handling field extensions

1. **quo<Un|P>**: quotient of multivariate polynomial ring + Gröbner bases
2. **ext<k|P>**: field extension by \(X^p - X - \alpha \), precomputed bases + multivariate
3. **ext<k|p>**: field extension of degree \(p \), precomputed bases + multivariate

Benchmarks (on 14 AMD Opteron 2500)

Three modes

- \(p = 2, d = 1 \), height varying,
- \(p \) varying, \(d = 1 \), height = 2,
- \(p = 5, d \) varying, height = 2.
Construction of the tower + precomputations

- Time comparison for different heights:
 - `zz_p`: Red line
 - `GF2`: Magenta line
 - `magma(1)`: Blue line
 - `magma(2)`: Light blue line
 - `magma(3)`: Cyan line

- Graphs showing time in seconds for different heights and primes:
 - Vertical axis: Time in seconds
 - Horizontal axis: Height
 - Different graphs for different primes (`p`)

- L. De Feo (École Polytechnique)

[Graphs and data points are shown in the image, illustrating the time taken for various computations.]
Multiplication

0.000976562
0.00390625
0.015625
0.0625
0.25
1
4
16
64
256
10 15 20 25
seconds
height
zz_p
gf2x
magma(1)
magma(2)

0.000976562
0.00390625
0.015625
0.0625
0.25
1
4
16
32 64 128 256 512 1024 2048 4096
seconds
d
zz_p
magma(1)
magma(2)
magma(3)
Isomorphism ([Couveignes '00] vs Magma)
Benchmarks on isogenies ([Couveignes ’96])

Over $\mathbb{F}_{2^{101}}$, on an Intel Xeon E5430 Quad Core Processor 2.66GHz, 64GB ram

L. De Feo (École Polytechnique)
These algorithms are packaged in a library

Download FAAST at
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST

We are currently writing an spkg for Sage.