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Introduction

• Isogeny-Based cryptography: very compact keys, ciphertexts
and signatures*.
But is a young field and schemes are relatively slow.

• Non generic cryptanalysis of SIDH:
• GPST adaptive attack,
• Petit’s torsion point attacks on imbalance variants of SIDH.

• Torsion point attacks do not apply to SIDH parameters.

Our contribution:

• A generalisation of the torsion point attacks
• A new adaptive attack on SIDH
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Elliptic curves and isogenies



Elliptic curves

• Smooth projective algebraic curve of genus 1. In large
characteristic p > 3: E : Y 2 = X3 + aX + b.

• Isomorphism classes: same j-invariant j(E) = 1728 4a3

4a3+27b2 .
• E has an abelian group structure, and the n-torsion group

for n (p ∤ n)
E[n] ≃ Z/nZ ⊕ Z/nZ

• Over a finite field:

End(E) ≃ O ⊂ OK , K = Q
√

−∆) ordinary curve,
End(E) ≃ Omax ⊂ Bp,∞ supersingular curve.
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Isogenies

• Rational maps between elliptic curves that are group
morphisms.

• They are given by Vélu formulas.
• Their degrees1 are the size of their kernel.
• Efficiently computable when the degree is smooth, difficult

to compute when the degree is not smooth.

• Pure isogeny problem: given two isogenous elliptic curves
E1 and E2, compute an isogeny ϕ : E1 → E2.

1Separable isogenies.
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SIDH: Supersingular Isogeny
Diffie-Hellman



SIDH

E0 EA
ϕA

EB

ϕB

EAB

EBA

ϕ′
B

ϕ′
A

̸=

How would you define ϕ′
A and ϕ′

B? Will the resulting diagram
commute?
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SIDH

p = NANB − 1, E0[NA] = ⟨PA, QA⟩, E0[NB] = ⟨PB, QB⟩

E0, PA, QA, PB , QB EA, ϕA(PB), ϕA(QB)ϕA

EB , ϕB(PA), ϕB(QA)

ϕB

EAB = EBA

ϕ′
B

ϕ′
A

kerϕA = ⟨PA + [α]QA⟩, kerϕB = ⟨PB + [β]QB⟩
kerϕ′

A = ⟨ϕB(PA) + [α]ϕB(QA)⟩,
kerϕ′

B = ⟨ϕA(PB) + [β]ϕA(QB)⟩

Validation method: e2a(ϕB(PA), ϕB(QA)) = e2a(PA, QA)3b .

SSI-T Problem: Given E0, PB, QB, EA, ϕA(PB), ϕA(QB),
compute ϕA.
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Torsion point attacks



More facts about isogenies

• For any seperable d-isogeny φ : E → E′, there exist a
unique* d-isogeny φ̂ : E′ → E called the dual of φ such that
φ̂ ◦ φ = [d]E and φ ◦ φ̂ = [d]E′ .

E E′
φ

φ̂

• We have

ker φ̂ = φ(E[d]) and kerφ = φ̂(E′[d]).

Take away:

• The knowledge of φ is equivalent to the knowledge of φ̂.
• You can recover the kernel of a d-isogeny φ by evaluating φ

on the d-torsion group.
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The torsion point attacks

SSI-T Problem: Given E0, PB, QB, EA, ϕA(PB), ϕA(QB),
compute ϕA.

Targets the SSI-T assuming that End(E0) is known.
Is this a fair assumption?

• Case of SIDH, Yes, because E0 = E(1728) (or its neighbour)
is a special curve: End(E0) is known.

• General case, No. In fact, computing the endomorphism ring
of a random supersingular curve is a hard problem, which is
equivalent to the pure isogeny problem.
But, we don’t know how to generate supersingular curves
with unknown endomorphism ring.

So it is definitely a fair assumption.
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The torsion point attacks

Endormorphisms of E0 are carried on to EA through ϕA.
ϕA : E0→EA implies

Z + ϕA ◦ End(E0) ◦ ϕ̂A ↪→ End(EA)

[d] + ϕA ◦ θ ◦ ϕ̂A = τ

E0 EA
ϕA

ϕ̂A

θ τ

9/18



The torsion point attacks

Endormorphisms of E0 are carried on to EA through ϕA.
ϕA : E0→EA implies

Z + ϕA ◦ End(E0) ◦ ϕ̂A ↪→ End(EA)

[d] + ϕA ◦ θ ◦ ϕ̂A = τ

E0 EA
ϕA

ϕ̂A

θ τ

9/18



The torsion point attacks

Endormorphisms of E0 are carried on to EA through ϕA.
ϕA : E0→EA implies

Z + ϕA ◦ End(E0) ◦ ϕ̂A ↪→ End(EA)

[d] + ϕA ◦ θ ◦ ϕ̂A = τ

E0 EA
ϕA

ϕ̂A

θ τ

9/18



The torsion point attacks

When τ = [d] + ϕA ◦ θ ◦ ϕ̂A has degree N2
Be where e is small, we

can decompose τ as

τ = ψ̂2 ◦ ψe ◦ ψ1.

E0 EA
ϕA

ϕ̂A

θ

E1

E2

ψe

ψ1

ψ2

• ψ1 and ψ2 can be computed from ϕA(PB), ϕA(QB).
• ψe is recovered by brute force.
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The torsion point attacks

Once τ = [d] + ϕA ◦ θ ◦ ϕ̂A is known:

ker ϕ̂A = 2 ker(τ − [d]) ∩ E2[NA]

Break SSI-T ⇒ find d, θ such that

deg([d] + ϕA ◦ θ ◦ ϕ̂A) = N2
Be.

j(E0) = 1728 ⇒ norm eq. : d2 +N2
A(c2 + p(b2 + a2)) = N2

Be.

Easy to find solutions when NB > pNA.

SIDH : NA ≈ NB ≈ √
p. Still Secure !

2under a small condition on θ
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Generalising the torsion point
attacks



Generalising torsion point attacks

SSI-TG Problem: Given E0, G1, G2, G3 ⊂ E0[NB] pairwise
disjoint cyclic groups of order NB, EA, ϕA(G1), ϕA(G2), ϕA(G3),
compute ϕA.

Lemma: E0[NB] = ⟨PB, QB⟩. Given ϕA(G1), ϕA(G2), ϕA(G3),
there exists an integer λ coprime to NB such that one can
evaluate ϕλ = [λ] ◦ ϕA on E0[NB].
Moreover, λ2 can be recovered through a DL comp.:

eNB
(ϕλ(PB), ϕλ(QB)) = eNB

(PB, QB)λ2NA .

NB not a prime power ⇒ λ2 may have multiple square roots.
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Generalising torsion point attacks

Remark: we don’t need to know λ in order to evaluate
τ = [d] + ϕA ◦ θ ◦ ϕ̂A on E0[NB], λ2 suffices.
In fact we have:

ϕλ ◦ θ ◦ ϕ̂λ = ([λ] ◦ ϕA) ◦ θ ◦ ( ̂[λ] ◦ ϕλ) = [λ2] ◦ ϕA ◦ θ ◦ ϕ̂A.

Hence
τ = [d] + [λ−2] ◦ ϕλ ◦ θ ◦ ϕ̂λ.

The rest of the attack is unchanged.
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A new adaptive attack on SIDH



An overview

key exchange oracle:

O(E,R, S,E′) =
{

1 if E/ ⟨R + [α]S⟩ = E′

0 if E/ ⟨R + [α]S⟩ ≠ E′

Idea of the attack
1 Actively (using the key exchange oracle) recover the action

of ϕA on large pairwise disjoint cyclic groups
G1, G2, G3 ⊂ E0[NNB] of order NNB where p < N .

2 Use the generalised torsion point attacks to recover ϕA.
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Step 1: Recovering the action of ϕA on a larger group

Set N =
∏e

i=1 ℓ
2
i , ℓi coprime to NANB.

Let ℓ | N and let G be a cyclic group of order ℓ2NB.

E0

EA

EB

EAB

EG

EH = EϕA(G)

···

ϕA

ϕ′
B

ϕB

ϕ′
A

ϕG

ϕH

Query: O(EG, R, S, EH), R = [ℓ−1]ϕG(PA), S = [ℓ−1]ϕG(QA)
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Countermeasures

• Start from a supersingular curve E0 with unknown
endomorphism ring, this would counter the torsion point
attacks that are used as building block in the attack.

• Use FO-transform as in SIKE: when running the
re-encryption step in the FO, Alice will notice that the
public key used was malicious.
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We have presented:
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• A new adaptive attack on SIDH
• Some countermeasures

Take away:

• Torsion point attacks become relevant to SIDH parameters
in an adaptive setting!

• New cryptanalytic tool !

Golden open questions:

• How far can we push torsion point attacks?
• And CSIDH? Any hope for an adaptive attack?
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Happy to discuss your comments and
questions !!!

Full paper available at:
https://eprint.iacr.org/2021/1322
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