

A New Adaptive Attack on SIDH

Isogeny-Based Cryptography

Tako Boris Fouotsa, LASEC-EPFL

Join work with Christophe Petit, ULB & UoB

An Ordinary Day in Supersingularland, Zürich, 7th July 2022

Introduction

- Isogeny-Based cryptography: very compact keys, ciphertexts and signatures*.
 But is a young field and schemes are relatively slow.
- Non generic cryptanalysis of SIDH:
 - GPST adaptive attack,
 - Petit's torsion point attacks on *imbalance variants* of SIDH.
- Torsion point attacks do not apply to SIDH parameters.

Our contribution:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH

Introduction

- Isogeny-Based cryptography: very compact keys, ciphertexts and signatures^{*}.
 But is a young field and schemes are relatively slow.
- Non generic cryptanalysis of SIDH:
 - GPST adaptive attack,
 - Petit's torsion point attacks on *imbalance variants* of SIDH.
- Torsion point attacks do not apply to SIDH parameters.

Our contribution:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH

Introduction

- Isogeny-Based cryptography: very compact keys, ciphertexts and signatures^{*}.
 But is a young field and schemes are relatively slow.
- Non generic cryptanalysis of SIDH:
 - GPST adaptive attack,
 - Petit's torsion point attacks on *imbalance variants* of SIDH.
- Torsion point attacks do not apply to SIDH parameters.

Our contribution:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH

Outline

Elliptic curves and isogenies

SIDH: Supersingular Isogeny Diffie-Hellman

Torsion point attacks

Generalising the torsion point attacks

A new adaptive attack on SIDH

Summary

Elliptic curves and isogenies

- Smooth projective algebraic curve of genus 1. In large characteristic p > 3: $E: Y^2 = X^3 + aX + b$.
- Isomorphism classes: same *j*-invariant $j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$.
- E has an abelian group structure, and the n-torsion group for $n \ (p \nmid n)$

 $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$

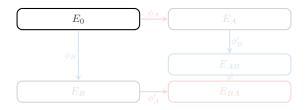
• Over a finite field:

 $\operatorname{End}(E) \simeq \mathcal{O} \subset O_K, K = \mathbb{Q}\sqrt{-\Delta}) \quad \text{ordinary curve,} \\ \operatorname{End}(E) \simeq \mathcal{O}_{\max} \subset \mathcal{B}_{p,\infty} \quad \text{supersingular curve.}$

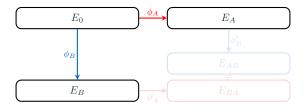
- Rational maps between elliptic curves that are group morphisms.
- They are given by Vélu formulas.
- Their degrees¹ are the size of their kernel.
- Efficiently computable when the degree is smooth, difficult to compute when the degree is not smooth.
- Pure isogeny problem: given two isogenous elliptic curves E_1 and E_2 , compute an isogeny $\phi: E_1 \to E_2$.

¹Separable isogenies.

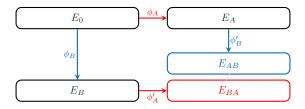
SIDH: Supersingular Isogeny Diffie-Hellman



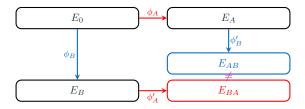
How would you define ϕ'_A and ϕ'_B ? Will the resulting diagram commute?



How would you define ϕ'_A and ϕ'_B ? Will the resulting diagram commute?



How would you define ϕ'_A and ϕ'_B ? Will the resulting diagram commute?



How would you define ϕ_A' and $\phi_B'?$ Will the resulting diagram commute?

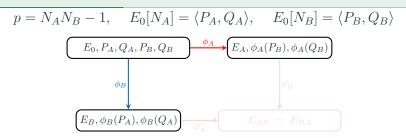
$$p = N_A N_B - 1, \quad E_0[N_A] = \langle P_A, Q_A \rangle, \quad E_0[N_B] = \langle P_B, Q_B \rangle$$

$$(E_0, P_A, Q_A, P_B, Q_B) \xrightarrow{\phi_A} (E_A, \phi_A(P_B), \phi_A(Q_B))$$

$$\phi_B \xrightarrow{\phi_B} \phi_B \xrightarrow{\phi_A} (E_B, \phi_B(P_A), \phi_B(Q_A)) \xrightarrow{\phi_A} (E_{AB} = E_{BA})$$

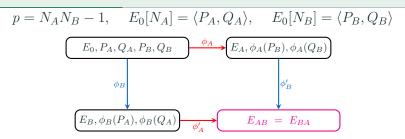
$$\begin{split} & \ker \phi_A = \langle P_A + [\alpha] Q_A \rangle, \quad \ker \phi_B = \langle P_B + [\beta] Q_B \rangle \\ & \ker \phi'_A = \langle \phi_B(P_A) + [\alpha] \phi_B(Q_A) \rangle, \\ & \ker \phi'_B = \langle \phi_A(P_B) + [\beta] \phi_A(Q_B) \rangle \end{split}$$

Validation method: $e_{2^a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2^a}(P_A, Q_A)^{3^b}$.



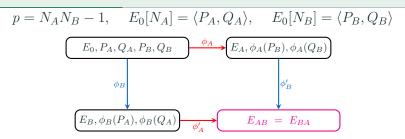
$$\begin{split} & \ker \phi_A = \langle P_A + [\alpha] Q_A \rangle, \quad \ker \phi_B = \langle P_B + [\beta] Q_B \rangle \\ & \ker \phi'_A = \langle \phi_B(P_A) + [\alpha] \phi_B(Q_A) \rangle, \\ & \ker \phi'_B = \langle \phi_A(P_B) + [\beta] \phi_A(Q_B) \rangle \end{split}$$

Validation method: $e_{2^a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2^a}(P_A, Q_A)^{3^b}$.



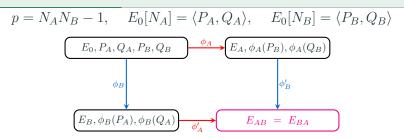
$$\begin{split} &\ker \phi_{A} = \langle P_{A} + [\alpha] Q_{A} \rangle, \quad \ker \phi_{B} = \langle P_{B} + [\beta] Q_{B} \rangle \\ &\ker \phi_{A}' = \langle \phi_{B}(P_{A}) + [\alpha] \phi_{B}(Q_{A}) \rangle, \\ &\ker \phi_{B}' = \langle \phi_{A}(P_{B}) + [\beta] \phi_{A}(Q_{B}) \rangle \end{split}$$

Validation method: $e_{2^a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2^a}(P_A, Q_A)^{3^b}$.



 $\ker \phi_A = \langle P_A + [\alpha] Q_A \rangle, \quad \ker \phi_B = \langle P_B + [\beta] Q_B \rangle$ $\ker \phi'_A = \langle \phi_B(P_A) + [\alpha] \phi_B(Q_A) \rangle,$ $\ker \phi'_B = \langle \phi_A(P_B) + [\beta] \phi_A(Q_B) \rangle$

Validation method: $e_{2^a}(\phi_B(P_A), \phi_B(Q_A)) = e_{2^a}(P_A, Q_A)^{3^b}$.



$$\begin{split} &\ker \phi_A = \langle P_A + [\alpha] Q_A \rangle, \quad \ker \phi_B = \langle P_B + [\beta] Q_B \rangle \\ &\ker \phi'_A = \langle \phi_B(P_A) + [\alpha] \phi_B(Q_A) \rangle, \\ &\ker \phi'_B = \langle \phi_A(P_B) + [\beta] \phi_A(Q_B) \rangle \end{split}$$

 $\textbf{Validation method:} \quad e_{2^a}(\phi_B(P_A),\phi_B(Q_A))=e_{2^a}(P_A,Q_A)^{3^b}.$

More facts about isogenies

• For any seperable d-isogeny $\varphi : E \to E'$, there exist a unique^{*} d-isogeny $\hat{\varphi} : E' \to E$ called the dual of φ such that $\hat{\varphi} \circ \varphi = [d]_E$ and $\varphi \circ \hat{\varphi} = [d]_{E'}$.

$$E \xrightarrow{\varphi} E'$$

• We have

 $\ker \hat{\varphi} = \varphi(E[d]) \quad \text{and} \quad \ker \varphi = \hat{\varphi}(E'[d]).$

Take away:

- The knowledge of φ is equivalent to the knowledge of $\hat{\varphi}$.
- You can recover the kernel of a *d*-isogeny φ by evaluating φ on the *d*-torsion group.

SSI-T Problem: Given E_0 , P_B , Q_B , E_A , $\phi_A(P_B)$, $\phi_A(Q_B)$, compute ϕ_A .

Targets the **SSI-T** assuming that $\underline{\text{End}(E_0)}$ is known. Is this a fair assumption?

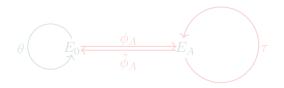
- Case of SIDH, Yes, because $E_0 = E(1728)$ (or its neighbour) is a special curve: End (E_0) is known.
- General case, No. In fact, computing the endomorphism ring of a random supersingular curve is a hard problem, which is equivalent to the pure isogeny problem.
 But, we don't know how to generate supersingular curves with unknown endomorphism ring.

So it is definitely a fair assumption.

Endormorphisms of E_0 are carried on to E_A through ϕ_A . $\phi_A : E_0 \rightarrow E_A$ implies

```
\mathbb{Z} + \phi_A \circ \operatorname{End}(E_0) \circ \hat{\phi}_A \hookrightarrow \operatorname{End}(E_A)
```

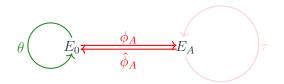
 $[d] + \phi_A \circ \theta \circ \hat{\phi}_A = \tau$



Endormorphisms of E_0 are carried on to E_A through ϕ_A . $\phi_A : E_0 \rightarrow E_A$ implies

```
\mathbb{Z} + \phi_A \circ \operatorname{End}(E_0) \circ \hat{\phi}_A \hookrightarrow \operatorname{End}(E_A)
```

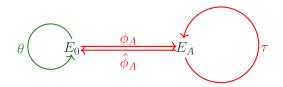
 $[d] + \phi_A \circ \theta \circ \hat{\phi}_A = \tau$



Endormorphisms of E_0 are carried on to E_A through ϕ_A . $\phi_A : E_0 \rightarrow E_A$ implies

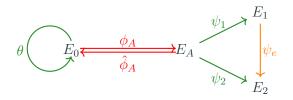
$$\mathbb{Z} + \phi_A \circ \operatorname{End}(E_0) \circ \hat{\phi}_A \hookrightarrow \operatorname{End}(E_A)$$

 $[d] + \phi_A \circ \theta \circ \hat{\phi}_A = \tau$



When $\tau = [d] + \phi_A \circ \theta \circ \hat{\phi}_A$ has degree $N_B^2 e$ where e is small, we can decompose τ as

 $\boldsymbol{\tau} = \hat{\psi}_2 \circ \boldsymbol{\psi}_{\boldsymbol{e}} \circ \psi_1.$



- ψ_1 and ψ_2 can be computed from $\phi_A(P_B), \phi_A(Q_B)$.
- ψ_e is recovered by brute force.

Once
$$\tau = [d] + \phi_A \circ \theta \circ \hat{\phi}_A$$
 is known:

$$\ker \hat{\phi}_A = {}^2 \ker(\tau - [d]) \cap E_2[N_A]$$

Break SSI-T \Rightarrow find d,θ such that

$$\deg([d] + \phi_A \circ \theta \circ \hat{\phi}_A) = N_B^2 e.$$

 $j(E_0) = 1728 \Rightarrow \text{norm eq.} : d^2 + N_A^2(c^2 + p(b^2 + a^2)) = N_B^2 e.$

Easy to find solutions when $N_B > pN_A$.

SIDH : $N_A \approx N_B \approx \sqrt{p}$. Still Secure !

 $^2 \mathrm{under}$ a small condition on θ

Generalising the torsion point attacks

SSI-TG Problem: Given E_0 , $G_1, G_2, G_3 \subset E_0[N_B]$ pairwise disjoint cyclic groups of order N_B , E_A , $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, compute ϕ_A .

Lemma: $E_0[N_B] = \langle P_B, Q_B \rangle$. Given $\phi_A(G_1), \phi_A(G_2), \phi_A(G_3)$, there exists an integer λ coprime to N_B such that one can evaluate $\phi_{\lambda} = [\lambda] \circ \phi_A$ on $E_0[N_B]$. Moreover, λ^2 can be recovered through a DL comp.:

 $e_{N_B}(\phi_\lambda(P_B),\phi_\lambda(Q_B)) = e_{N_B}(P_B,Q_B)^{\lambda^2 N_A}.$

 N_B not a prime power $\Rightarrow \lambda^2$ may have multiple square roots.

SSI-TG Problem: Given E_0 , $G_1, G_2, G_3 \subset E_0[N_B]$ pairwise disjoint cyclic groups of order N_B , E_A , $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, compute ϕ_A .

Lemma: $E_0[N_B] = \langle P_B, Q_B \rangle$. Given $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, there exists an integer λ coprime to N_B such that one can evaluate $\phi_{\lambda} = [\lambda] \circ \phi_A$ on $E_0[N_B]$. Moreover, λ^2 can be recovered through a DL comp.:

$$e_{N_B}(\phi_\lambda(P_B),\phi_\lambda(Q_B)) = e_{N_B}(P_B,Q_B)^{\lambda^2 N_A}.$$

 N_B not a prime power $\Rightarrow \lambda^2$ may have multiple square roots.

SSI-TG Problem: Given E_0 , $G_1, G_2, G_3 \subset E_0[N_B]$ pairwise disjoint cyclic groups of order N_B , E_A , $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, compute ϕ_A .

Lemma: $E_0[N_B] = \langle P_B, Q_B \rangle$. Given $\phi_A(G_1)$, $\phi_A(G_2)$, $\phi_A(G_3)$, there exists an integer λ coprime to N_B such that one can evaluate $\phi_{\lambda} = [\lambda] \circ \phi_A$ on $E_0[N_B]$. Moreover, λ^2 can be recovered through a DL comp.:

$$e_{N_B}(\phi_\lambda(P_B),\phi_\lambda(Q_B)) = e_{N_B}(P_B,Q_B)^{\lambda^2 N_A}.$$

 N_B not a prime power $\Rightarrow \lambda^2$ may have multiple square roots.

Remark: we don't need to know λ in order to evaluate $\tau = [d] + \phi_A \circ \theta \circ \hat{\phi}_A$ on $E_0[N_B], \lambda^2$ suffices.

In fact we have:

$$\phi_{\lambda} \circ \theta \circ \hat{\phi}_{\lambda} = ([\lambda] \circ \phi_A) \circ \theta \circ (\widehat{[\lambda] \circ \phi_{\lambda}}) = [\lambda^2] \circ \phi_A \circ \theta \circ \hat{\phi}_A.$$

Hence

$$\tau = [d] + [\lambda^{-2}] \circ \phi_{\lambda} \circ \theta \circ \hat{\phi}_{\lambda}.$$

The rest of the attack is unchanged.

Remark: we don't need to know λ in order to evaluate $\tau = [d] + \phi_A \circ \theta \circ \hat{\phi}_A$ on $E_0[N_B]$, λ^2 suffices.

In fact we have:

$$\phi_{\lambda} \circ \theta \circ \hat{\phi}_{\lambda} = ([\lambda] \circ \phi_A) \circ \theta \circ (\widehat{[\lambda] \circ \phi_{\lambda}}) = [\lambda^2] \circ \phi_A \circ \theta \circ \hat{\phi}_A.$$

Hence

$$\tau = [d] + [\lambda^{-2}] \circ \phi_{\lambda} \circ \theta \circ \hat{\phi}_{\lambda}.$$

The rest of the attack is unchanged.

A new adaptive attack on SIDH

key exchange oracle:

$$O(E, R, S, E') = \begin{cases} 1 & \text{if } E/\langle R + [\alpha]S \rangle = E' \\ 0 & \text{if } E/\langle R + [\alpha]S \rangle \neq E' \end{cases}$$

Idea of the attack

- 1 Actively (using the key exchange oracle) recover the action of ϕ_A on large pairwise disjoint cyclic groups $G_1, G_2, G_3 \subset E_0[NN_B]$ of order NN_B where p < N.
- 2 Use the generalised torsion point attacks to recover ϕ_A .

key exchange oracle:

$$O(E, R, S, E') = \begin{cases} 1 & \text{if } E/\langle R + [\alpha]S \rangle = E' \\ 0 & \text{if } E/\langle R + [\alpha]S \rangle \neq E' \end{cases}$$

Idea of the attack

- 1 Actively (using the key exchange oracle) recover the action of ϕ_A on large pairwise disjoint cyclic groups $G_1, G_2, G_3 \subset E_0[NN_B]$ of order NN_B where p < N.
- 2 Use the generalised torsion point attacks to recover ϕ_A .

key exchange oracle:

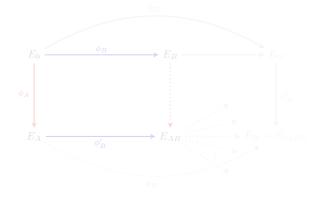
$$O(E, R, S, E') = \begin{cases} 1 & \text{if } E/\langle R + [\alpha]S \rangle = E' \\ 0 & \text{if } E/\langle R + [\alpha]S \rangle \neq E' \end{cases}$$

Idea of the attack

- 1 Actively (using the key exchange oracle) recover the action of ϕ_A on large pairwise disjoint cyclic groups $G_1, G_2, G_3 \subset E_0[NN_B]$ of order NN_B where p < N.
- 2 Use the generalised torsion point attacks to recover ϕ_A .

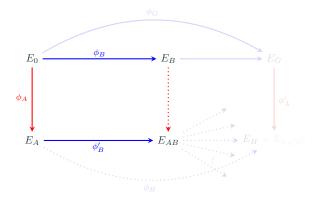
Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Let $\ell \mid N$ and let G be a cyclic group of order $\ell^2 N_B$.



Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

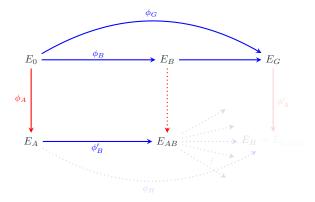
Let $\ell \mid N$ and let G be a cyclic group of order $\ell^2 N_B$.



Query: $O(E_G, R, S, E_H), R = [\ell^{-1}]\phi_G(P_A), S = [\ell^{-1}]\phi_G(Q_A)$

Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

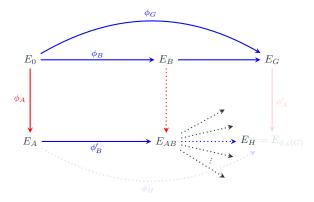
Let $\ell \mid N$ and let G be a cyclic group of order $\ell^2 N_B$.



Query: $O(E_G, R, S, E_H), R = [\ell^{-1}]\phi_G(P_A), S = [\ell^{-1}]\phi_G(Q_A)$

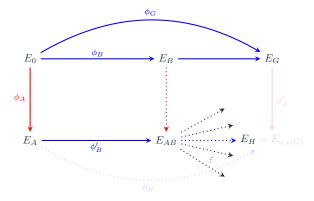
Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Let $\ell \mid N$ and let G be a cyclic group of order $\ell^2 N_B$.



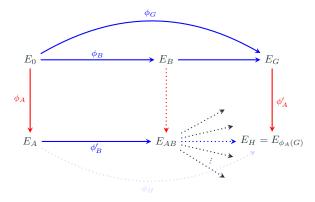
Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Let $\ell \mid N$ and let G be a cyclic group of order $\ell^2 N_B$.



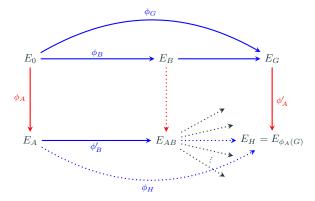
Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Let $\ell \mid N$ and let G be a cyclic group of order $\ell^2 N_B$.



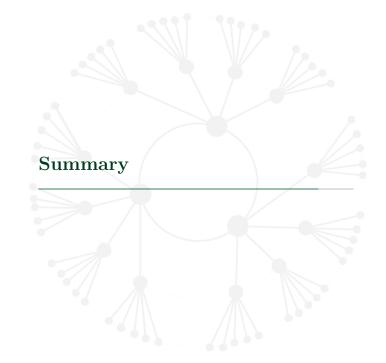
Set $N = \prod_{i=1}^{e} \ell_i^2$, ℓ_i coprime to $N_A N_B$.

Let $\ell \mid N$ and let G be a cyclic group of order $\ell^2 N_B$.



Query: $O(E_G, R, S, E_H), R = [\ell^{-1}]\phi_G(P_A), S = [\ell^{-1}]\phi_G(Q_A)$

- Start from a supersingular curve E_0 with unknown endomorphism ring, this would counter the torsion point attacks that are used as building block in the attack.
- Use FO-transform as in SIKE: when running the re-encryption step in the FO, Alice will notice that the public key used was malicious.



Summary

We have presented:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH
- Some countermeasures

Take away:

- Torsion point attacks become relevant to SIDH parameters in an adaptive setting!
- New cryptanalytic tool !

Golden open questions:

- How far can we push torsion point attacks?
- And CSIDH? Any hope for an adaptive attack?

We have presented:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH
- Some countermeasures

Take away:

- Torsion point attacks become relevant to SIDH parameters in an adaptive setting!
- New cryptanalytic tool !

Golden open questions:

- How far can we push torsion point attacks?
- And CSIDH? Any hope for an adaptive attack?

We have presented:

- A generalisation of the torsion point attacks
- A new adaptive attack on SIDH
- Some countermeasures

Take away:

- Torsion point attacks become relevant to SIDH parameters in an adaptive setting!
- New cryptanalytic tool !

Golden open questions:

- How far can we push torsion point attacks?
- And CSIDH? Any hope for an adaptive attack?

Happy to discuss your comments and questions !!!

Full paper available at: https://eprint.iacr.org/2021/1322