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'Group Signatures (GS)

Intuitively, a group signature requires
1. Any member in the group can sign anonymously for the group.




‘Group Signatures (GS)

Intuitively, a group signature requires
1. Any member in the group can sign anonymously for the group.

2. In case of abuse, there is a manager (opener) who can open any
signature from the group and know who is the signer (and provides

a proof).
i



'Security Notions

The requirements for GS:
1. CCA (resp. CPA) Anonymity: Given a signature from any two

people chosen by the adversary (resp. withiout access to the
opening oracle), it's impossible to tell from which of the two.

2. (Full) Unforgeability: Any colluding members (with the opener)
cannot forge a signature not tracing to one of them.

3. Traceability: A valid signature should be able to be opened to one
and only one user in the group.
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‘Brief History

>

> Firstly proposed by Chaum and van Heyst [CV91] by using RSA or
DLP assumptions.

> It is formalized in [BMWO03,BSZ05] provided with frameworks using
verifiable IND-CCA PKE + signature schemes (sign-and-encrypt
paradigm).

> Applications and real-world deployments: e.g. directed anonymous
attestation and enhanced privacy ID ([BCC04,BL07]), also in a
variety of the blockchain and cryptocurrency studies.

> Post-Quantum Proposals: LLLS13, ELL*15, LLNW16, LNWX18,
KY19 etc.

» Recently, several proposals have achieved logarithmic property
[BCN18, dLS18, EZS"19, ESZ22] where the signature size is
logarithmic in the number of the members.
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WA Question

Can we have an isogeny group signature competitive among the
post-quantum proposals?




Difficulties

v

» CCA-Anonymity: The standard sign-and-encrypt technique
requires IND-CCA verifiable encryption scheme (PKE) because we
use

1. verifiability + signature scheme — unforgeability
2. the decryption oracle (IND-CCA) to answer the opening oracle
queries for CCA anonymity.

> Full Unforgeability and Traceability: requires NIZK for the
ciphertext and the plaintext.
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Difficulties

However, no such practical tools in isogenies with the standard
assumptions.

Al

ct = H(j(Eshared)) D m

> Solutions: We construct a new verifiable IND-CPA PKE with
online-extractable NIZK (but weakly decryptable).

v
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'‘Contributions (Brief)

1.

o & 0D

A new practical framework for GS (ARS) based on group actions
with isogeny and lattice instantiations.

Logarithmic signature size.
Tightly secure variants for the two instantiations.
The first GS from isogenies and the only logarithmic one.

The isogeny instantiation has the smallest signature size in the
literature.

v
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'Isogeny Instantiation

v

Comparison with other isogeny-based group signature proposals.

Notions Signature Size | Anonymity Manager
Accountable
[LD21] O(N log(N)) CPA No
[CHH"21] O(N?) CPA Partially
This Work O(log(N)) CCA Yes

» N: number of members.

» Manager Accountablility: Manager cannot frame an honest
member.
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‘Super High Level Idea

NIZK
1 (2-protocol + FS)

(x,w) ER J > Signature

OR-Proof Relation

A4

PKE Encryption Relation
v

[({xz} , Enc(pk, I; 3")) (w,I T))] OE (Group Signature

51g = Ry X Repe J (CCA Anonymity)

PKE Decryption Relation
PKE Key Relation

(Group Signature
Rsig X Raec X Rxr J ’ (Full-Unf)

({x;}, (W, D)) € Ry, } > Ring Signature ]

PKE: IND-CPA

v




'Sigma Protocols

v

Let R be a relation and (X, W) € R. A sigma protocol (X-protocol) for R is
a three-move interactive protocol

IIs = (P = (P1,P2),V =(V1,V))

between a prover P with (X, W) and a verifier V with X.

» Correctness

com « P, (X,W) = » ch « V;(com) _
ch > Special Soundness

rsp « P,(W, ch) 5 » Honest Verifier
Zero-knowledge
1/0 « V,(com, ch, rsp) (HVZK)

1/0

A
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WGroup Actions

A group G acts onaset X by an action x : G x X — X if
1. Identity: x(e,x) = x
2. Compatibility: x(g, x(h, x)) = *(gh, x)

Abbreviate x(g, x) as g * x.
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A group G acts onaset X by an action x : G x X — X if
1. Identity: x(e,x) = x
2. Compatibility: x(g, x(h, x)) = *x(gh, x)

Abbreviate x(g, x) as g * x.

» Hardness: given x, g x x and x, it’s hard to recover g.




'‘Group Actions :

A group G acts onaset X by an action x : G x X — X if
1. Identity: x(e,x) = x
2. Compatibility: x(g, x(h, x)) = *x(gh, x)

Abbreviate x(g, x) as g * x.

» Hardness: given x, g x x and x, it’s hard to recover g.

Let n be a natural number, G = Z,,, and X a cyclic group of order n.

Define g x x := x9.
The hardness here is based on the discrete logarithm problem over X.

el



Isogeny Instantiations

v

CSIDH ([CLM*18,BKV19]) gives an ideal class group G and a set of
supersingular curves X = E,(O, ) such that

> G acts on X (freely and transitively),
» Ey € X.

"Eog:y> = x> +x
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Isogeny Instantiations

CSIDH ([CLM*18,BKV19]) gives an ideal class group G and a set of
supersingular curves X = E,(O, ) such that

» G acts on X (freely and transitively),
» Ep e X

GAIP Problem

Let s < G. Given E = s x Ey, it's hard to recover s € G.

'Eg iy =x+x




WGroup-Action-based PKE

» M c G is small.
> KeyGen: sk « G and pk = sk x E (denoted by Ep).




'‘Group-Action-based PKE

» M c Gis small.
> KeyGen: sk « G and pk = sk x Ey (denoted by Ep).
> An Elgamal-type encryption

ct = (r x Eo, (r + m) x Epx) < Enc(pk, m; r < G).

» The decryption of ct = (E1, E,) with sk returns m’ by enumerating
elements in M s.t. (m’ + sk) x E; = E,. Otherwise, it returns L.




'‘Group-Action-based PKE

» M c Gis small.
> KeyGen: sk « G and pk = sk x Ey (denoted by Ep).
> An Elgamal-type encryption

ct = (r x Eo, (r + m) x Epx) < Enc(pk, m; r < G).

» The decryption of ct = (E1, E,) with sk returns m’ by enumerating
elements in M s.t. (m’ + sk) x E; = E,. Otherwise, it returns L.

-

., \n
sk ! m/'.‘.
L, I
\
-\
.\

r 1T

4

h 4

EO sk E‘pk




‘Group-Action-based PKE :

sk 2 m/p'\_
1 » 1
\.\ .!'
. < . 7
r 1T
EO sk Epk

Decisional CSIDH Problem

Leta,b «— G. Given (Ey,a x Eo, b x Eq, E), where E is either (a + b) x E
or E = c x Ej for some ¢ « G. It’s difficult to distinguish the distribution

of E.




Content

Technical Overview




'OR-Proof

We start with the relation from [BKP20].

Ror = {({Xi}ie[m: (51; 1)) | si*Eqg =X € {Xi}iE[N]}

(Group) (Group)
Signing verification

keys keys
1 X1
82 A
[ Ey X5
SN Xy




'OR-Proof

We start with the relation from [BKP20].

v

R
'Rop = {({XE}EE[N]s (51,1)) | s;xEy =X, € {Xi}ie[N]}
(Ring)  (Ring) (Z-pro.)
Signing verification Comm.
keys keys
™) S]F_ g ™)
51 X1 > X
52 ) Sé r B
[ Xo X7 > X; {XiYiemv
SN Xy > XN
o S;\r \ o




'OR-Proof

We start with the relation from [BKP20].

v

IR, = {({XE}EE[N]: (51;1)) | s;*Ey =X € {Xi}iE[N]}

(Group) (Group) (2-pro.) (2-pro.)

(X-pro.)
Signing verification Comm Challenge: Response:
keys keys ; 0 {siYieny
S1 ~ 1 s +Sr
5 X > X; B
S5 2
[ E, X, > X7 {X{Yiem
SN Xy > Xy
Sy ’

Verification O

Verification 1




Encryption Relation

v

» To concatenate and shuffle two proofs together.

sp* Eq = X1 € {Xitieiw
Ror X Renc = ((Xi}ietn Epicr <t (51, 1,7))
or enc { { L}tE[N] pis €4 (S ) | ct = Enc(pk, I;r) = (r * Eo, (r+1)* Epk)
(Group) (Group) (Z-pro.) (Z-pro.) (Z-pro.)
Signing verification keys Comm. Challenge: Response:
keys 0 {s{,7}ie [N]
1 si+s,r+r
s;*X) ]
(rf *E, (ry — 1) * Ey)
{s; * X Jiem
(O * Eq, () — D) * E2)Yierw
sy * X, ]
™ (ry * E, (y = N) * E3)

Verification O

Verification 1

(s; +5])*Eg
((Tf + 1) *Eo, (rp + 1)) * Epk)




'Logarithmic Proof

v

Optimize by using PRNG, Merkle Trees, commitment schemes.

sp* Eg = X; € {Xi}iein
Ror X Rene = {({Xi}iE[N]:Eka ct, (511 I, ?’)) | ct = Enc(pk,I;7) = (T *Eq, (r + 1) % Epk)
(Gro‘up} .(.Gro.up) (Z-pro.) (Z-pro.) (Z-pro.) .
Signing verification keys Comm. Challenge: {Resp;mse.
keys 0; ST Yienys
1 sp+s;, 1+,

rnd;, path
_1 . Ez) T, = Com(s" * Xy |+ Ey Il " E5 || rnd,)

Ty = Com(s" * Xy Il - Eq Il -+ B |l rndy) ]

Verification 1

Verification O

E{O'l}ﬂ > PRNG > s"7".{md; € {0’1}/1}1'6[1\!]




Traceable” Sigma Protocol

v

Repeat A times, the interactive protocol will have 24 strength.

Via Fiat-Shamir transform, the protocol can be transformed into a
non-interactive ring signature of form ({X;};cn7, PK, ct, o).

Roughly,
> Online Extractability + IND-CPA — CCA anonymity

» Online Extractability + Hardness assumption of the action —
Unforgeability
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'Online-Extractability (OE)

v

» We show OE by modeling PRNG/commitment schemes/Merkle
trees as a random oracle.

(Ring) (Ring) (2-pro.) (Z-pro.) (Z-pro.)
Signing verification keys Comm. Challenge: Response:
keys 0 Seed;

1 (s;+s") &,

X, 1 s ) r+7r) &,

—>{ Ty = Com(s" * Xy Il 7 wpyc cty Il bity ) bit; & Path
cty )| )
N 12 4 N\

%o X2 5! T, = Com(s * Xy Il ' #picct Il bity) Merkle
ct=1*m T *px Xpk et )| ) Tree

I*MT

~ r ~

S| Ty = Com(s" * Xy Il ' #y cty |l bity)

v r \
\/eriﬁcation 1

Verification 0
seede 0,1} > PRNG (> 7" {bit e (011},

Xpk




'Online-Extractability (OE)

1. Observe “seed” from the oracle queries.
2. Obtain the reponse for the challenge 1.
3. Argue that A can cheat with only negligible chance.

v

(Ring) (Ring) (2-pro.) (z-pro.) (Z-pro.)
Signing verification keys Comm. Challenge: Response:
keys 0 Seed;
1 (s; +s5)8&,
X 1 s ) r+7r) &,
tl —>! T, = Com(s’ = Xy Il 7' wpc cty Il bit, ) bit, & Path
Cly ) \ J
X 1 s [ | VEE
0 X2 5| T, = Com(s’ * X, Il 7/ #p ct Il bit,) Root
Cb— DM T *pi Xpic ct, 7T )| Tree
I *M r : ) ' . A
r
Xy (i” S, S| Ty = Com(s’ * Xy Il ' #pyc cty Il bity)
N v \

Verification 1

Verification 0

6{0,1}3 > PRNG (> s"7{bit e (0.1}




' The Decryption and Key Validation Relations

>
>

By using a similar method, we construct NIZKs for the decryption
relations and PKE key relations for our GAPKEs.

> Isogeny:
{((Eo, E1, Ea, E3,M),sk) | E1 = sk x Eg, M % sk x E, = E3}.

> The opener provides the proof for the opening result using NIZK for
the relation. Traceability and full-unforgeability will follow.
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'Other results.

v

> Reduce the signature size:
> Using the unbalanced challenge space (#0s>#1s).

» [attice instantiation:

> We give GAPKE by using Lindner-Peikert framework [LP11].
> The signature size can be further reduced by using the
Bai-Galbraith method.

> Tightly secure variant:

> Using the Katz-Wang method.
> The (unforgeability) reduction loss is only 1/2. (¢2/N* mostly.)
> The additional cost is only a constant?.

2Increased by 0.5 KB; signing, verification slow down by.factor2:
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'Katz-Wang Method

v

Given s x X, to recover .

We use online-extractability of NIZK in the reduction:

~
] v kJ - S x
[\ - \ / \
Member 1 Member d Member N
~/
/U %
Adversary
Online- Ay
Extractable (S,.7,r)
NIZK -

The guess will incur a reduction loss by a factor 1/N.
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'Katz-Wang Method

We can double each verification key as vk = (X", X\).

The signing key now is (b, s;) s.1. Xf’ = 5; * Xo where b & {0, 1}.

After obtaining N instances (s| x Xo, - - , sy x Xp), we can use our NIZK:

vki= S, x X, vki=S;xX,  vkis= Sux X,
vki= S, xX, vk;= $xX,  vki= SxX,
/ \ e / \ XL / \
Member 1 Member J Member N
A
A/L%
Adversary
Online- oo
Extractable (8,3.1)
NIZK or (85..7)

} to recover one of s;. The reduction loss is now 1/2.




Tightly Secure Variant (Katz-Wang Method)

v

*X, =XP elx/
S1% %0 =4 { ‘}j.iemx[zv] }

RorXRenc = {({Xi}ie[N]: pk,ct, (s, b, 1, T)) |
ct = Enc(pk, I;7) = I *y 1 *py Xpic

(Ring) (2-pro.) (Z-pro.) (Z-pro.)
verification Comm. Challenge: Response:
keys 0 Seed

1 (s1+5) &,

r+r') &,

s T = Com(s’ * X Il 7' *py cti Il bit?) bit; & Path
7' Ti = Com(s’ % X{ Il ' %py cty Il bit})

Root
Tree

Ty = Com(s’ * X§ Il " %py cty Il bit})
/|| T = Com(s’ * X Il v/ »pi ctyy Il bity)

seed€ {0,1)* > PRNG > s’ {bitd,bit} € 0,134},

» The (unforgeability) reduction loss is only 1/2. (¢>/N? mostly.)
» The additional cost is only a constants.

3Without taking the verification keys into account.

30/34



Content

Results

4—



'Result: post-quantum group signatures

v

Comparison with other post-quantum group signature proposals.

N Hardness Security | Anonymity Manager
2 25 26 210 921 | Agssumption Level Accountable
Isogeny 36 6.0 6.6 9.0 155 | CSIDH-512 * CCA Yes
Lattice 124 126 126 129 134 | MSIS/MLWE | NIST 2 CCA Yes
Lattice 86 88 89 91 96 | MSIS/MLWE | NIST 2 CCA No
[ESZ22] / 12 / 19 / | MSIS/MLWE | NIST 2 CPA No
[KKW18] / / 280 418 / LowMC NIST 5 | selfless-CCA No

» N: number of memebers. Signature size is in KB.
> *: estimated to be 60 bits of quantum security in [Pei20].
» Non-Selfless: anonymous against full-key exposure.

» Manager Accountablility: Manager cannot frame an honest
member.
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‘Gontributions

v

1. A new framework for GS based on group actions with isogeny and
lattice instances achieving all ideal security properties specified in
[BSZ05].

2. Our framework is logarithmic. Concretely, the size of

> the isogeny instance has the smallest order of magnitude in the
literature (e.g. 6.6 KB for 64 members).

> the lattice instance has the smallest growth rate in the lattice
literature®.

3. The first two tightly secure post-quantum GS.
4. The first GS from isogenies and the only logarithmic proposal.

40.51log,(N) + 85.9 KB
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