Group Signatures and More from Isogenies (and Lattices): Generic, Simple, and Efficient

Yi-Fu Lai² Joint work with

Ward Beullens¹, Samuel Dobson², Shuichi Katsumata³, Federico Pintore⁴

7th July 2022@IBM Research

1/34

¹IBM Research, ² University of Auckland, ³ AIST, ⁴ University of Bari

Introduction

Preliminaries

Technical Overview

Results

Introduction

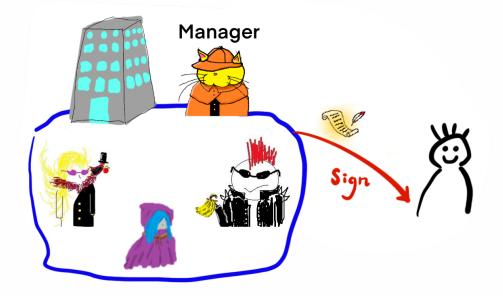
Preliminaries

Technical Overview

Results

3/34

Group Signatures (GS)



Intuitively, a group signature requires

1. Any member in the group can sign anonymously for the group.

Group Signatures (GS)

Intuitively, a group signature requires

- 1. Any member in the group can sign anonymously for the group.
- In case of abuse, there is a manager (opener) who can open any signature from the group and know who is the signer (and provides a proof).

The requirements for GS:

- 1. CCA (resp. CPA) Anonymity: Given a signature from any two people chosen by the adversary (resp. withiout access to the opening oracle), it's impossible to tell from which of the two.
- 2. (Full) Unforgeability: Any colluding members (with the opener) cannot forge a signature not tracing to one of them.
- 3. **Traceability:** A valid signature should be able to be opened to one and only one user in the group.

Brief History

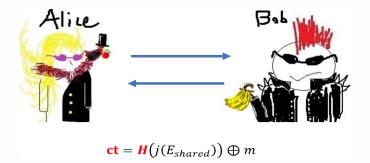
- Firstly proposed by Chaum and van Heyst [CV91] by using RSA or DLP assumptions.
- It is formalized in [BMW03,BSZ05] provided with frameworks using verifiable IND-CCA PKE + signature schemes (sign-and-encrypt paradigm).
- Applications and real-world deployments: e.g. directed anonymous attestation and enhanced privacy ID ([BCC04,BL07]), also in a variety of the blockchain and cryptocurrency studies.
- Post-Quantum Proposals: LLLS13, ELL+15, LLNW16, LNWX18, KY19 etc.
- Recently, several proposals have achieved logarithmic property [BCN18, dLS18, EZS⁺19, ESZ22] where the signature size is logarithmic in the number of the members.

Can we have an isogeny group signature competitive among the post-quantum proposals?

- CCA-Anonymity: The standard sign-and-encrypt technique requires IND-CCA verifiable encryption scheme (PKE) because we use
 - 1. verifiability + signature scheme \rightarrow unforgeability
 - 2. the decryption oracle (IND-CCA) to answer the opening oracle queries for CCA anonymity.

Full Unforgeability and Traceability: requires NIZK for the ciphertext and the plaintext.

However, no such practical tools in isogenies with the standard assumptions.



 Solutions: We construct a new verifiable IND-CPA PKE with online-extractable NIZK (but weakly decryptable).

- 1. A new practical framework for GS (ARS) based on group actions with isogeny and lattice instantiations.
- 2. Logarithmic signature size.
- 3. Tightly secure variants for the two instantiations.
- 4. The first GS from isogenies and the only logarithmic one.
- 5. The isogeny instantiation has the smallest signature size in the literature.

Comparison with other isogeny-based group signature proposals.

Notions	Signature Size	Anonymity	Manager	
			Accountable	
[LD21]	$\mathcal{O}(N\log(N))$	CPA	No	
[CHH ⁺ 21]	$\mathcal{O}(N^2)$	CPA	Partially	
This Work	$\mathcal{O}(\log(N))$	CCA	Yes	

- N: number of members.
- Manager Accountablility: Manager cannot frame an honest member.

Introduction

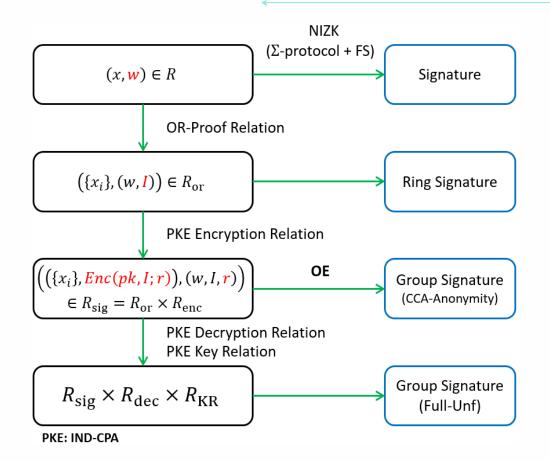
Preliminaries

Technical Overview

Results

12/34

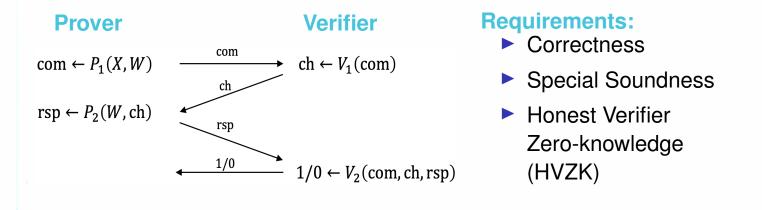
Super High Level Idea



Let *R* be a relation and $(X, W) \in R$. A sigma protocol (Σ -protocol) for *R* is a three-move interactive protocol

 $\Pi_{\Sigma} = (P = (P_1, P_2), V = (V_1, V_2))$

between a prover P with (X, W) and a verifier V with X.



Group Actions

A group G acts on a set X by an action $\star : G \times X \to X$ if

- 1. Identity: $\star(e, x) = x$
- 2. Compatibility: $\star(g, \star(h, x)) = \star(gh, x)$

Abbreviate $\star(g, x)$ as $g \star x$.

Group Actions

A group G acts on a set X by an action $\star : G \times X \to X$ if

- 1. Identity: $\star(e, x) = x$
- 2. Compatibility: $\star(g, \star(h, x)) = \star(gh, x)$

Abbreviate $\star(g, x)$ as $g \star x$.

• Hardness: given \star , $g \star x$ and x, it's hard to recover g.

Group Actions

A group G acts on a set X by an action $\star : G \times X \to X$ if

- 1. Identity: $\star(e, x) = x$
- 2. Compatibility: $\star(g, \star(h, x)) = \star(gh, x)$

Abbreviate $\star(g, x)$ as $g \star x$.

• Hardness: given \star , $g \star x$ and x, it's hard to recover g.

Example

Let *n* be a natural number, $G = \mathbb{Z}_n$, and X a cyclic group of order *n*. Define $g \star x := x^g$.

The hardness here is based on the discrete logarithm problem over X.

CSIDH ([CLM⁺18,BKV19]) gives an ideal class group G and a set of supersingular curves $X = E_p(O, \pi)$ such that

- G acts on X (freely and transitively),
- ► $E_0 \in X$.¹

$${}^{1}E_0: y^2 = x^3 + x$$

CSIDH ([CLM⁺18,BKV19]) gives an ideal class group G and a set of supersingular curves $X = E_p(O, \pi)$ such that

• G acts on X (freely and transitively),

► $E_0 \in X^1$

GAIP Problem

Let $s \leftarrow G$. Given $E = s \star E_0$, it's hard to recover $s \in G$.

$${}^{1}E_0: y^2 = x^3 + x$$

- $\mathcal{M} \subset G$ is small.
- ► KeyGen: $sk \leftarrow G$ and $pk = sk \star E_0$ (denoted by E_{pk}).

- $\mathcal{M} \subset G$ is small.
- ► KeyGen: $sk \leftarrow G$ and $pk = sk \star E_0$ (denoted by E_{pk}).
- An Elgamal-type encryption

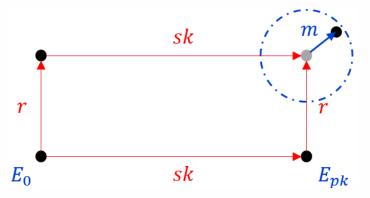
$$\mathsf{ct} = (\mathbf{r} \star E_0, (\mathbf{r} + \mathbf{m}) \star E_{\mathsf{pk}}) \leftarrow \mathsf{Enc}(\mathsf{pk}, \mathbf{m}; \mathbf{r} \leftarrow G).$$

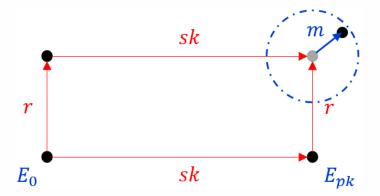
► The decryption of ct = (E_1, E_2) with sk returns m' by **enumerating** elements in \mathcal{M} s.t. $(m' + sk) \star E_1 = E_2$. Otherwise, it returns \perp .

- $\mathcal{M} \subset G$ is small.
- ► KeyGen: $sk \leftarrow G$ and $pk = sk \star E_0$ (denoted by E_{pk}).
- An Elgamal-type encryption

$$ct = (r \star E_0, (r + m) \star E_{pk}) \leftarrow Enc(pk, m; r \leftarrow G).$$

► The decryption of ct = (E_1, E_2) with sk returns m' by **enumerating** elements in \mathcal{M} s.t. $(m' + sk) \star E_1 = E_2$. Otherwise, it returns \perp .





Decisional CSIDH Problem

Let $a, b \leftarrow G$. Given $(E_0, a \star E_0, b \star E_0, E)$, where *E* is either $(a + b) \star E_0$ or $E = c \star E_0$ for some $c \leftarrow G$. It's difficult to distinguish the distribution of *E*.

Introduction

Preliminaries

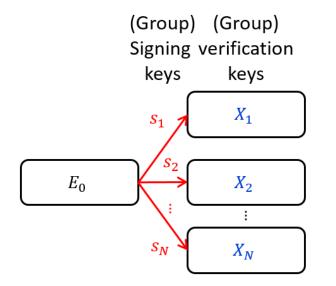
Technical Overview

Results

OR-Proof

We start with the relation from [BKP20].

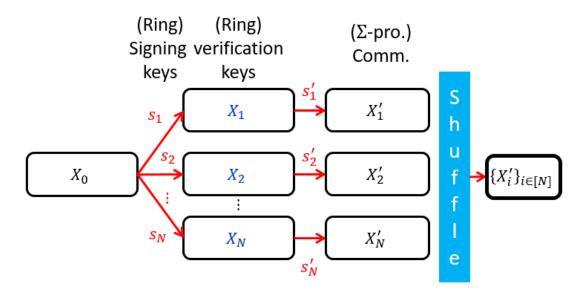
$$R_{\rm or} = \left\{ \left(\{X_i\}_{i \in [N]}, (s_I, I) \right) \mid s_I \star E_0 = X_I \in \{X_i\}_{i \in [N]} \right\}$$



OR-Proof

We start with the relation from [BKP20].

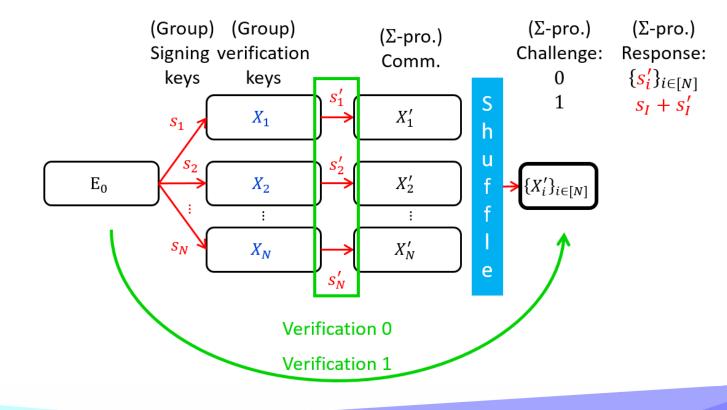
$$R_{i} R_{or} = \left\{ \left(\{X_{i}\}_{i \in [N]}, (s_{I}, I) \right) \mid s_{I} \star E_{0} = X_{I} \in \{X_{i}\}_{i \in [N]} \right\}$$



OR-Proof

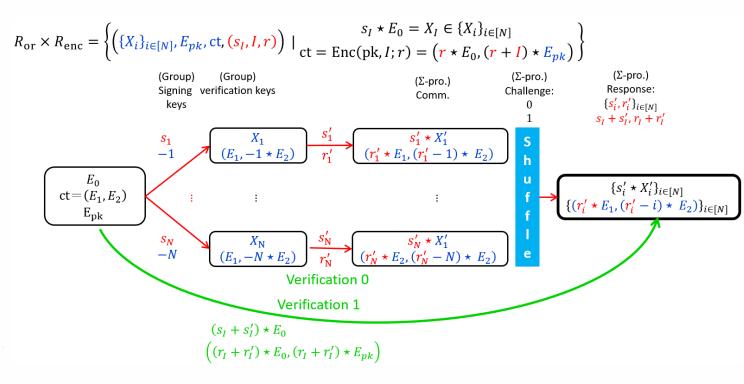
We start with the relation from [BKP20].

$$IR_{\rm or} = \left\{ \left(\{X_i\}_{i \in [N]}, (s_I, I) \right) \mid s_I \star E_0 = X_I \in \{X_i\}_{i \in [N]} \right\}$$

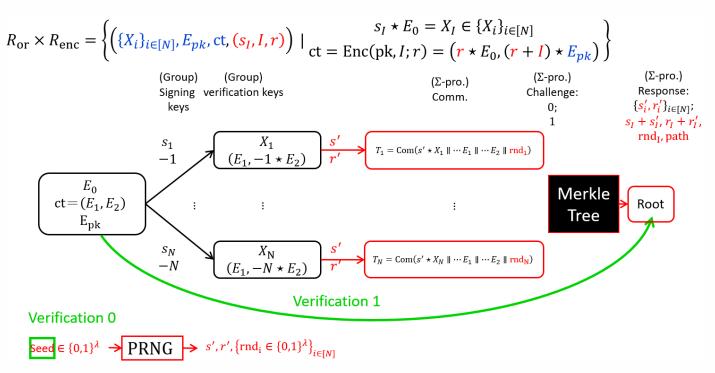


Encryption Relation

To concatenate and shuffle two proofs together.



Optimize by using PRNG, Merkle Trees, commitment schemes.



Repeat λ times, the interactive protocol will have 2^{λ} strength.

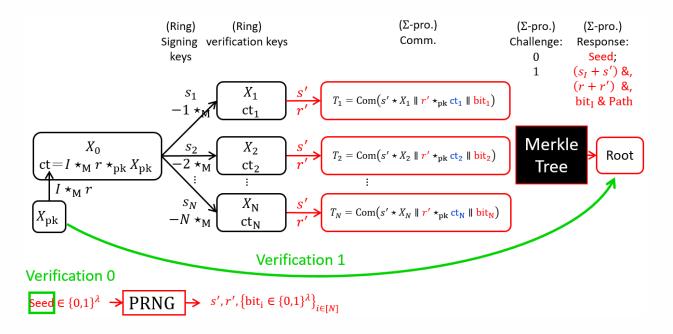
Via Fiat-Shamir transform, the protocol can be transformed into a non-interactive ring signature of form $({X_i}_{i \in [N]}, pk, ct, \sigma)$.

Roughly,

- Online Extractability + IND-CPA → CCA anonymity
- ► Online Extractability + Hardness assumption of the action → Unforgeability

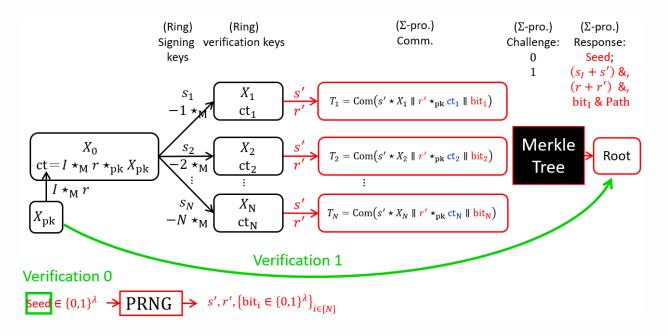
Online-Extractability (OE)

We show OE by modeling PRNG/commitment schemes/Merkle trees as a random oracle.



Online-Extractability (OE)

- 1. Observe "seed" from the oracle queries.
- 2. Obtain the reponse for the challenge 1.
- 3. Argue that \mathcal{A} can cheat with only negligible chance.



By using a similar method, we construct NIZKs for the decryption relations and PKE key relations for our GAPKEs.

Isogeny:

 $\{((E_0, E_1, E_2, E_3, \mathsf{M}), \mathsf{sk}) \mid E_1 = \mathsf{sk} \star E_0, \mathsf{M} \star \mathsf{sk} \star E_2 = E_3\}.$

The opener provides the proof for the opening result using NIZK for the relation. Traceability and full-unforgeability will follow.

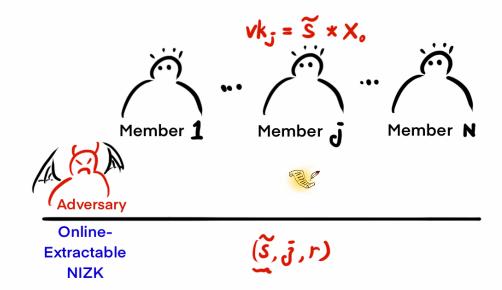
- Reduce the signature size:
 - Using the unbalanced challenge space (#0s>#1s).
- Lattice instantiation:
 - We give GAPKE by using Lindner-Peikert framework [LP11].
 - The signature size can be further reduced by using the Bai-Galbraith method.
- Tightly secure variant:
 - Using the Katz-Wang method.
 - The (unforgeability) reduction loss is only 1/2. (ϵ^2/N^2 mostly.)
 - The additional cost is only a constant².

²Increased by 0.5 KB; signing, verification slow down by factor 2.

Katz-Wang Method

Given $\tilde{s} \star X_0$ to recover \tilde{s} .

We use online-extractability of NIZK in the reduction:



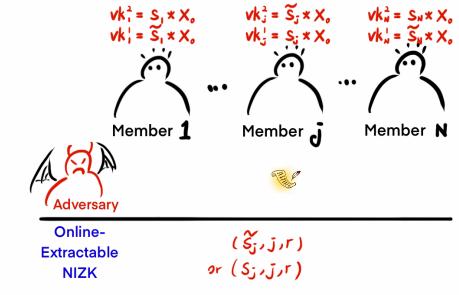
The guess will incur a reduction loss by a factor 1/N.

Katz-Wang Method

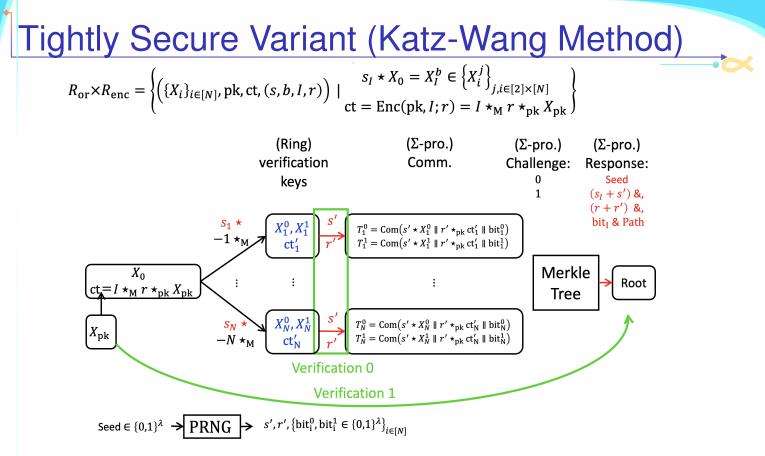
We can double each verification key as $vk = (X_i^{(1)}, X_i^{(2)})$.

The signing key now is (b, s_i) s.t. $X_i^b = s_i \star X_0$ where $b \stackrel{\$}{\leftarrow} \{0, 1\}$.

After obtaining N instances $(\tilde{s}_1 \star X_0, \dots, \tilde{s}_N \star X_0)$, we can use our NIZK:



to recover one of $\tilde{s_i}$. The reduction loss is now 1/2.



- The (unforgeability) reduction loss is only 1/2. (ϵ^2/N^2 mostly.)
- The additional cost is only a constant³.

³Without taking the verification keys into account.

Introduction

Preliminaries

Technical Overview

Results

31/34

Comparison with other post-quantum group signature proposals.

		N				Hardness	Security	Anonymity	Manager
	2	2^5	2^6	2^{10}	2^{21}	Assumption	Level		Accountable
Isogeny	3.6	6.0	6.6	9.0	15.5	CSIDH-512	*	CCA	Yes
Lattice	124	126	126	129	134	MSIS/MLWE	NIST 2	CCA	Yes
Lattice	86	88	89	91	96	MSIS/MLWE	NIST 2	CCA	No
[ESZ22]	/	12	/	19	/	MSIS/MLWE	NIST 2	CPA	No
[KKW18]	/	/	280	418	/	LowMC	NIST 5	selfless-CCA	No

- N: number of memebers. Signature size is in KB.
- *: estimated to be 60 bits of quantum security in [Pei20].
- Non-Selfless: anonymous against full-key exposure.
- Manager Accountablility: Manager cannot frame an honest member.

- 1. A new framework for GS based on group actions with isogeny and lattice instances achieving all ideal security properties specified in [BSZ05].
- 2. Our framework is logarithmic. Concretely, the size of
 - the isogeny instance has the smallest order of magnitude in the literature (e.g. 6.6 KB for 64 members).
 - the lattice instance has the smallest growth rate in the lattice literature⁴.
- 3. The first two tightly secure post-quantum GS.
- 4. The first GS from isogenies and the only logarithmic proposal.

ŝ

Thanks for listening!

34/34