
Tools for designing protocols based on isogenies

Luca De Feo

Isogeny School 2020

Abstract

Post-quantum isogeny based cryptography starts with key exchange
(SIDH, CSIDH), and often ends with it. Even isogeny based signatures
have taken several years to develop, and are often highly technical. But
from such a rich family of assumptions much more is expected than just
key exchange or signatures.

Redesigning from scratch any new primitive is a time-consuming and
error-prone task. It is much easier to abstract away the complexity of
a mathematical construction into a framework that lowers entry barri-
ers and simplifies protocol design. Think about how discrete logarithm
groups simplify thinking about elliptic curve cryptography, or of the myr-
iad applications of pairing groups.

Unfortunately, not all of isogeny based cryptography appears to be
amenable to simple and powerful abstractions. These lecture notes are
about that part of isogeny based cryptography that is. We first define the
frameworks, staying clear of the technical complications, then we present
some protocols constructed with them.

These notes are divided in two parts. The first part deals with isogenous
pairing groups, a combination of pairing based and isogeny based cryptography
that leads to interesting time-delay protocols. Alas, the use of pairings make
these protocols not quantum-safe.

The second part deals with cryptographic group actions, i.e., essentially with
CSIDH. We formalize the pitfalls that make building upon CSIDH harder than
we would like it to be, then we build upon it anyway.

Exercises are scattered along the way. Most of them are standard exercises
the reader may already be familiar with. We also give some problems: these
may go from little explored research questions to big open questions in the field.

Part I

Isogenous Pairing Groups
It all starts with an equation:

e′N
(
φ(P), Q

)
= eN

(
P, φ̂(Q)

)
. (1)

1

Let’s dissect it:

• φ : E → E′ is an isogeny from an elliptic curve E to an elliptic curve E′;

• φ̂ : E′ → E is the dual of φ;

• N is a positive integer, usually a prime;

• P ∈ E[N] is an N -torsion point on the domain curve;

• Q ∈ E′[N] is an N -torsion point on the image curve;

• eN and e′N are pairings of order N on E and E′ respectively, usually the
Weil pairings of E and E′.

That this equation is satisfied for any choice of φ,N, P,Q and for any known
elliptic pairing is a remarkable fact, the proof of which is out of the scope of
these notes. See [39, § III.8] for the details. Our goal here is to exploit Eq. (1)
to construct new cryptographic protocols.

1 Pairings

We take a step back and recall the basic definitions and properties of crypto-
graphic pairings. If you are already familiar with them, you can definitely skip
this section.

Definition 1. A pairing of two groups G1, G2 is a bilinear map e : G1 ×G2 →
G3, i.e., one such that:

• e(ga, h) = e(g, ha) = e(g, h)a,

• e(gg′, h) = e(g, h)e(g′, h),

• e(g, hh′) = e(g, h)e(g, h′),

for all a ∈ Z, all g, g′ ∈ G1 and all h, h′ ∈ G2.
A pairing is said to be non-degenerate if:

• e(g, h) = 1 for all g implies h = 1, and

• e(g, h) = 1 for all h implies g = 1.

A pairing is said to be alternating if G1 = G2 and e(g, g) = 1 for all g.

Exercise 1. Let e be alternating, prove that e(g, h) = e(h, g)−1.

Remark 2. In the definition above we denoted all three groups G1, G2, G3 mul-
tiplicatively, which is the standard convention in cryptography.

However, in practice, elliptic pairings have groups of elliptic points for G1

and G2, and a multiplicative subgroup of a finite field for G3. Thus, textbooks
on elliptic curves tend to denote G1 and G2 additively, but G3 multiplicatively,
e.g.: e(P + Q,R) = e(P,R)e(Q,R). I think we can all agree this is extremely
confusing to anyone except arithmetic geometers, and we shall thus avoid this
devilish notation.

2

For a pairing to be useful in cryptography, it needs to be easy to compute,
but it also needs some hardness assumptions. There is a plethora of different
assumptions in the literature, but we shall restrict our attention to only a few:

• The groups G1, G2, G3 are (generalized) discrete logarithm groups, in par-
ticular they are usually assumed to have prime order;

• Pairing inversion (see below) is hard.

Definition 3 (Pairing inversion problem). Let e : G1 ×G2 → G3 be a pairing,
the pairing inversion problem on G1 (resp. G2) asks, given t ∈ G3 and h ∈ G2

(resp. g ∈ G1), to find a g (resp. h) such that

e(g, h) = t.

Exercise 2. Assume that G1, G2, G3 are cyclic. Prove that pairing inversion
is no harder than discrete logarithm (in which group?).

Exercise 3. Let G be a cyclic group, and let e : G×G→ G3 be a non-degenerate
pairing, prove that DDH is easy in G.

2 The Weil pairing

Elliptic curve subgroups come equipped with a natural pairing. Let E/k be an
elliptic curve defined over a field k, and let N be a positive integer prime to the
characteristic of k. We know that the torsion subgroup E[N] has rank two, i.e.,
E[N] ' (Z/NZ)2. The Weil pairing of order N is a non-degenerate alternating
pairing eN : E[N] × E[N] → µN , where µN ⊂ k̄ is the subgroup of N -th roots
of unity of (the algebraic closure of) k.

Exercise 4 (warning: multiplicative notation!). Let 〈P,Q〉 be a basis of E[N],
show that

eN (P aQb, P cQd) = eN (P,Q)
det
(
a b
c d

)
,

which is equal to 1 if and only if the determinant is 0 (modulo N).

It is not important here to know how the Weil pairing is computed (see,
e.g., [25]). Suffice to say that there is an efficient algorithm (with running
time polynomial in log(N)). Other pairings are also defined for elliptic curves,
however they are all related to the Weil pairing, and they will not make a
difference for our purposes, thus we will ignore them. For a review of known
elliptic pairings, addressed to non-specialists, see [26].

Eq. (1) is the main (the only) result we care about. Let’s hammer it home.

Theorem 4. Let E,E′ be elliptic curves, let φ : E → E′ be an isogeny, φ̂ :
E′ → E its dual, let N be a positive integer. For any P ∈ E[N] and Q ∈ E′[N]

e′N
(
φ(P), Q

)
= eN

(
P, φ̂(Q)

)
. (1)

3

Remark 5. Eq. (1) is a generalization of the bilinearity of the Weil pairing.
Indeed, for any integer a, the multiplication-by-a map [a] : E → E is an endo-
morphism (thus, an isogeny) of E, and its dual is [a] itself, thus

eN ([a]P,Q) = eN (P, [a]Q).

Since we have opted for the multiplicative notation P a, rather than [a]P , it
makes sense to also treat isogenies like exponents. At the cost of facing backlash
from the whole community, we will from now on rewrite Eq. (1) as

e′N
(
Pφ, Q

)
= eN

(
P,Qφ̂

)
. (1’)

For clarity, we will always use Greek letters for isogenies and Latin letters for
integer exponents.

Exercise 5. Let φ : E → E′ be an isogeny of degree d. Prove that, for any
N,P,Q

e′N
(
Pφ, Qφ

)
= eN (P,Q)d.

3 Pairing-friendly curves

The Weil pairing is defined for any curve and any N > 0, however constructing
curves for which it has the desired cryptographic properties is an art. Concretely,
we want to satisfy a few constraints:

• The curve must be defined over a finite field Fp;

• N must be large and prime;

• The torsion points E[N] must be defined over an extension of Fp of small
degree.

The last constraint is where all the difficulty lies. There exist a few different
constructions to achieve it, but we will only care about one.

Theorem 6. Let p > 3 be a prime, let E be a supersingular curve:

• defined over Fp, or

• defined over Fp2 such that #E(Fp2) = (p+ 1)2,

let N |(p+ 1). Then E[N] ⊂ E(Fp2).

4 Quantum annoying

Eq. (1) is obviously central to the theory of elliptic curves and isogenies, however
it is not immediately clear of what use it could be in cryptography. Indeed, while
Eq. (1) generalizes bilinearity, it is also more constrained, thus we expect to be
able to build strictly less protocols than with pairings alone.

4

However, isogeny problems tend to be quantum-resistant, while pairing prob-
lems are certainly not (see Exercise 2). Mixing them cannot possibly lead to a
quantum-resistant protocol, however, it can at least offer some partial security
guarantees against quantum attackers. The first to suggest this were Koshiba
and Takashima [28, 29], who introduced the name “Isogenous Paring Groups”
(IPG), and who applied them to identity-based and attribute-based encryption
with the goal of offering security against an adversary with limited access to
quantum resources.

More recently, the concept of quantum annoying has been formalized for
password-based protocols [24]. Intuitively, a password-based protocol (e.g., a
Password Authenticated Key Exchange, or PAKE) is “quantum annoying” if
the best strategy for an adversary requires computing a new discrete logarithm
for each password guess. Formalizing quantum annoying-ness is still work in
progress. Rather than going 100% formal, here we will just review some very
basic primitives, which are believed (or is it just me?) to be quantum annoying
to some extent.

4.1 PRF

A cryptographic pseudorandom function (PRF) is, roughly speaking, function
f : X → Y that is computationally indistinguishable from a truly random
function. We are interested in a weaker property, called unpredictability.

Definition 7 (wUF). Let K, X and Y be finite sets. A weakly unpredictable
function family (wUF) is a family of efficiently computable keyed functions
{fk : X → Y | k ∈ K} such that for any probabilistic polynomial time (PPT)
adversary A has negligible advantage at the following game:

1. A random k ∈ K is drawn uniformly;

2. A can query a randomized oracle Ok that takes no input and outputs uni-
formly random pairs (x, fk(x));

3. A requests a challenge and receives a uniformly random x ∈ X, from this
moment on A has no more access to Ok;

4. A wins if it outputs fk(x).

Exercise 6. Let G be a group. The family {fk : g 7→ gk | 1 ≤ k ≤ #G} is a
wUF if and only if CDH is hard in G.

Analogous statements are true for isogenies, however some care must be
applied in defining the family.

Exercise 7. Let E and E′ be isogenous curves, let N be an integer. Let φ :
E → E′ be an isogeny of degree coprime to N , let fφ be the restriction of φ to
E[N]. Propose an algorithm to win the wUF game (i.e., predict the output of
fφ) using a discrete logarithm solver.

5

Although CDH is possibly an easier problem than DLP, note that the only
known way to solve CDH is to compute one discrete logarithm. Thus, if for
quantum annoying-ness we are interested in counting the number of calls to a
DL oracle, the reduction in Exercise 6 and that in 8 cost the same.1

Exercise 8. Let E and E′ be isogenous curves, let N be an integer. Describe
one or more families of isogenies f : E → E′ such that their restriction to E[N]
forms a wUF.

In terms of quantum annoying-ness, there is a huge difference between the
family in Exercise 6 and those you may have defined in 8. In the first case,
one discrete logarithm is enough to recover k, then A can compute as many
values fk(x) as they like. In the second case, it is not clear how to do it without
computing a discrete logarithm for each new challenge x.

Problem 9. Following [24], formalize quantum annoying-ness for wUFs, and
find families of isogenies that possess the property.

4.2 VRF

A verifiable random function (VRF) is, roughly speaking, a wUF that is not a
PRF.

Definition 8 (VRF). A verifiable random function family (VRF) is a wUF
{fk : X → Y | k ∈ K} such that there exists algorithms:

• Keygen, taking k as input and outputting a public key pk;

• Prove, taking as input x, k, fk(x) and outputting a proof π;

• Verify, taking as input x, y, pk, π and outputting 1 if and only if y = fk(x).

The following example is none else than the building block of the celebrated
BLS signature scheme [10].

Exercise 10. e : G1 × G2 → G3 be a non-degenerate pairing on CDH groups,
show that the family {fk : G1 → G1 : g 7→ gk | 1 ≤ k ≤ #G1} is a VRF.

The construction above is easily extended to isogenous pairing groups. In [18]
it is claimed, without a security reduction, that such extension is quantum
annoying.

Problem 11. Formalize the notion of quantum annoying-ness for VRFs, and
find families of isogenies that possess the property.

1In the generic group model, CDH and DLP are known to be roughly equivalent [38, 31].

6

4.3 (V)OPRF

An oblivious PRF (OPRF) is a protocol that lets two parties jointly compute
a PRF without revealing secret information to each other.

Definition 9 (OPRF). A PRF {fk : X → Y | k ∈ K} can be computed
obliviously if there exist a protocol between two parties S and C such that:

• at the beginning of the protocol, S knows k ∈ K and C knows x ∈ X;

• at the end of the protocol C learns fk(x) and S learns nothing.

No information is revealed to C and S other than that learned in the ideal pro-
tocol.

Let G be a group, let H1 be a hash function with range G, and let H2 be
another hash function. The family {fk : x 7→ H2(x,H1(x)k) | 1 ≤ k ≤ #G} can
be computed obliviously thanks to a protocol introduced in [27]:

1. On input x, C selects a random r and sends H1(x)r to S;

2. Upon receiving a = H1(x)r from C, S sends back ak;

3. Upon receiving b = H1(x)rk from S, C computes fk(x) = H2(x, b1/r).

A verifiable OPRF (VOPRF) is one with algorithms Keygen, Prove and
Verify, that let C verify that S behaves honestly (i.e., does not lead C to compute
fk′(x) for some k′ 6= k). Note that a VOPRF is not necessarily a VRF, as the
output fk(x) needs not be publicly verifiable.

Problem 12. Define quantum annoying-ness for (V)OPRF, then propose an
instantiation using the IPG framework.

5 Isogeny walks and sequential computation

Orthogonally to quantum annoying-ness, rooted deeper in the theory of isogeny
graphs, IPG have recently attracted more interest thanks to the “sequentiality”
properties of isogeny computations.

Isogeny computations are notoriously slow, but here we’re talking about
another level of slowness. The goal of time-delay cryptography is to design pro-
tocols where one party must compute for a given amount of time, and plausibly
no less. Mathematically defining time is not really feasible, but a good prac-
tical approximation is to define a sequential computation: a sequence of small
elementary steps that must be executed in a set order, and such that the final
result cannot, conjecturally, be computed in any other faster way. This model
of secure computation is radically different from the usual complexity-theoretic
model of cryptography, where, for example, the solution space of an NP problem
can be brute-forced in parallel, rendering moot any attempt at lower-bounding
time.

7

An example of sequential computation is iterated hashing. Let H be a hash
function, and define the function

f(x) := Hn(x) = H(H(· · · (H(x)))).

Assuming the output of H is in some sense “unpredictable”, we can affirm that
computing f(x) will take no less time than evaluating n times H. Then, to lower
bound wall time we can focus on the best possible hardware implementation of
H, not unlike what is currently done with the proof of work of the most popular
cryptocurrencies.

Another example of computation that is conjectured to be sequential is re-
peated squaring in groups of unknown order. Let G be a group, define the
function

f(x) := x2
n

.

If N is the order of G, then x2
n

= x2
n mod N , and thus the value of f(x) could

be computed with only O(log(N)) group operations. However when the order
N is supposed unknown, no better algorithm is known to compute f(x) other
than squaring n times. This function, possessing more structure than iterated
hashing, has been used to define efficient verifiable delay functions (VDF) [34,
41], that we shall define in the next section. Note that groups of unknown
order (e.g., RSA groups) are an intrinsically classical cryptographic construct,
as Shor’s quantum algorithm can compute the order of any group.

Here we are interested in the sequential properties of evaluating isogeny
walks. Let φ be an isogeny of degree, say, 2n. Then, φ factors as a walk

E0
φ1−→ E1

φ2−→ · · · φn−→ En

of isogenies φi of degree 2. If we fix an integer N , we may hope that evaluating
the restriction φ : E0[N] → En[N] is a sequential computation requiring no
less than n evaluations of isogenies of degree 2. Since isogenies of degree 2 can
be evaluated by a small fixed amount of finite field operations, we may focus
on designing the best possible hardware realization of 2-isogeny evaluation, and
then use n times the latency of that hardware as a lower bound.

However, like for repeated squaring, some known structure helps simplify
computations. It is indeed possible that for a given isogeny walk φ : E0 → En,
there exist shorter related isogeny walks ψ : E0 → En that let us compute xφ

in less time. The technical details of when such shortcuts exist, and how to
computed them are presented in [18]. Here we just apply the following rules
of thumb, that have been developed in the previous courses on class group
computations and the KLPT algorithm:

• Cycles in an isogeny graph correspond to endomorphisms, walks corre-
spond to ideals in End(E).

• Given enough cycles, we can compute End(E); given End(E), we can
compute cycles.

8

• Given End(E) and a walk E → E′, we can compute End(E′); given
End(E) and End(E′), we can compute a walk E → E′.

• Given End(E) and a walk φ : E → E′, we can compute the correspond-
ing ideal I ⊂ End(E); given End(E) and an ideal I ⊂ End(E), we can
compute the corresponding walk.

• Given End(E) and an ideal I ⊂ End(E), we can compute ideals J ⊂
End(E) in the same class as I.

All these rules hold (provided the appropriate bounds on isogeny degrees and
ideal norms) regardless of whether End(E) is commutative or not.

The moral teaching is that if we know End(E0), and if we have a walk
φ : E0 → En, we can probably compute, if it exists, a shorter walk ψ : E0 → En.
For the kind of walks φ we are interested in, several millions of steps long, much
shorter walks are always expected to exist.

The way around this problem is, like in the repeated squaring case, to assume
that End(Ei) is unknown. With the current knowledge, this appears to be
impossible for ordinary curves2, but for supersingular curves the difficulty of
computing endomorphism rings is a standard assumption, underpinning all of
isogeny based cryptography.

Finding shortcuts is not the only way to beat sequentiality. The following
exercise shows that sequentiality of isogeny walk evaluations cannot hold in a
quantum world.

Exercise 13. Let φ : E0 → En be an isogeny walk, let N � 2n be an integer.
Given g ∈ E0[N] and gφ, and given access to a DLP oracle, explain how to
compute hφ for a random h ∈ E0[N] in only O(log(N)) steps.

Despite the “easy patch” to prevent the computation of shortcuts, assuming
End(E) is unknown is easier said than done. We conclude with one of the most
fascinating open problems in isogeny based cryptography, and we refer to [18, 12]
for more details.

Problem 14. Find an algorithm that samples a random supersingular curve
E, and such that computing End(E) is difficult even when given access to the
internal state of the algorithm.

6 Delay protocols

Sequentiality alone is not very useful. In time-delay cryptography we seek to
build protocols where one party needs to go through the slow sequential compu-
tation, while the other parties only have efficient computations. Such protocols
roughly fall within two categories:

2More precisely, we do not know how to construct ordinary pairing friendly curves such that
it is hard to compute their endomorphism ring. Pairings are not necessary for sequentiality,
but will be needed in the next section.

9

• Protocols akin to signatures, where the goal is to efficiently verify that
one party honestly performed the slow sequential computation;

• Protocols akin to encryption, where the goal is to efficiently encrypt a
message that will take a long sequential computation to decrypt.

To the first category belong proofs of work (PoW) and verifiable delay func-
tions (VDF) [7]. To the second belong time-lock puzzles (TLP) [35] and delay
encryption (DE) [12].

A crucial difference between the protocols presented in Section 4 and delay
protocols is that the latter have no secrets. This slightly simplifies security def-
initions, but brings in the burden of unknown structure assumptions mentioned
in the previous section.

A VDF is, roughly speaking, a VRF with slow evaluation. It is a special
instance of PoW, where an input uniquely determines the output.

Definition 10 (VDF). A verifiable delay function (VDF) consists of three al-
gorithms:

Setup(λ, T) → (ek, vk). is a procedure that takes a security parameter λ, a de-
lay parameter T , and outputs public parameters consisting of an evaluation
key ek and a verification key vk.

Eval(ek, s) → (a, π). is a procedure to evaluate the function on input s. It pro-
duces the output a from s, and a (possibly empty) proof π. This procedure
is meant to be infeasible in time less than T .

Verify(vk, s, a, π) → {true, false}. is a procedure to verify that a is indeed the
correct output for s, with the help of the proof π.

A VDF shall satisfy three security properties: Correcteness, stating that a
honest evaluator always passes verification, Soundness, stating that a lying eval-
uator never passes verification, and Sequentiality, stating that it is impossible to
correctly evaluate the VDF in time less than T −o(T), even when using poly(T)
parallel processors.

Exercise 15. Drawing inspiration from the VRF of Exercise 10, design an
isogeny based VDF.

Delay encryption is related to identity based encryption [8]. Rather then
encrypting to an identity, parties encrypt to an ephemeral session. Once a
session is started, participants can start extracting the session decryption key, a
slow sequential operation. After extraction is completed, anyone in possession
of the session key can decrypt all messages encrypted to the session.

Definition 11 (DE). A delay encryption scheme consists of four algorithms:

Setup(λ, T)→ (ek, pk). Takes a security parameter λ, a delay parameter T ,
and produces public parameters consisting of an extraction key ek and an
encryption key pk. Setup must run in time poly(λ, T); the encryption key
pk must have size poly(λ), but the evaluation key ek is allowed to have
size poly(λ, T).

10

Extract(ek, id)→ idk. Takes the extraction key ek and a session identifier id ∈
{0, 1}∗, and outputs a session key idk. Extract is expected to run in time
exactly T .

Encaps(pk, id)→ (c, k). Takes the encryption key pk and a session identifier id ∈
{0, 1}∗, and outputs a ciphertext c ∈ C and a key k ∈ K. Encaps must
run in time poly(λ).

Decaps(pk, id, idk, c)→ k. Takes the encryption key pk, a session identifier id, a
session key idk, a ciphertext c ∈ C, and outputs a key k ∈ K. Decaps must
run in time poly(λ).

When Encaps and Decaps are combined with a symmetric encryption scheme
keyed by k, they become the encryption and decryption routines of a hybrid
encryption scheme.

A Delay Encryption scheme is correct if for any (ek, pk) = Setup(λ, T) and
any id

idk = Extract(ek, id) ∧ (c, k) = Encaps(pk, id) ⇒ Decaps(pk, id, idk, c) = k.

The security of Delay Encryption is defined similarly to that of public key en-
cryption schemes, and in particular of identity-based ones; however one addi-
tional property is required of Extract: that for a randomly selected identifier id,
the probability that any algorithm outputs idk in time less than T is negligible.

Exercise 16. (hard?) Define a DE scheme using the IPG framework.

I am unsure how hard this exercise is. If you are stuck, check out [12, § 3].
One notable fact about DE is that this isogeny based construction is the only
known instantiation of DE.

Part II

Cryptographic Group Actions
Also known as hard homogeneous spaces [15], cryptographic group actions are
a generalization of discrete logarithm groups that potentially offer resistance to
quantum attacks. Currently, the most popular post-quantum group action is
undoubtedly CSIDH [13], but the concept goes back to Couveignes’ and Ros-
tovtsev and Stolbunov’s key exchange scheme based on the group action of
complex multiplication on ordinary elliptic curves [15, 36]. Even earlier, group
actions were studied in the context of cryptography by Brassard and Yung [11].

Like discrete logarithm groups, group actions offer a simple but powerful
abstraction, from which we may derive many different primitives. Like with any
abstraction, though, there is a risk of loosing sight of the actual mathematical
object, and defining a protocol that cannot be instantiated or, worse, is insecure.

In this part, we describe cryptographic group actions using the formalism
of [1]. This framework, more detailed than the early attempt of [15], closely
models the actual properties of CSIDH and its derivatives.

11

7 Effective group actions

Definition 12 (Group Action). Let G be a group with identity element 1, and
let X be a set. A map ? : G×X → X is called an action of G on X if:

• 1 ? x = x for any x ∈ X, and

• (gh) ? x = g ? (h ? x) for any g, h ∈ G and any x ∈ X.

A group action (G,X, ?) is called transitive if for every x1, x2 ∈ X, there
exists g ∈ G such that x2 = g ? x1. It is called free if for every g ∈ G, whenever
there is some x ∈ X such that x = g ? x, then g = 1. A regular group action is
one that is transitive and free.

Exercise 17. Let (G,X, ?) be a group action. Prove that for any g ∈ G the
map πg : x 7→ g ? x is a permutation of X.

Exercise 18. Let (G,X, ?) be a regular group action. Prove that for any x ∈ X
the map fx : g 7→ g ? x defines a bijection between G and X.

In particular, for a regular group action, if G (or X) is finite then we must
have #G = #X. One informal way to think of X in this case is like a copy
of G where we forget which element is the group identity. From this point
on, whenever we mention a group action this will be implicitly assumed to be
regular, finite and abelian.

For a group action to be useful in cryptography, some operations must be
easily computable.

Definition 13 (Effective group action — EGA). A group action (G,X, ?) is
effective if the following properties are satisfied:

1. The group G is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a
valid group element in G.

(b) Equality testing, i.e., to decide if two bit strings represent the same
group element in G.

(c) Sampling, i.e., to sample an element g from a distribution on G
statistically close to uniform.

(d) Operation, i.e., to compute gh for any g, h ∈ G.

(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid
set element.

(b) Unique representation, i.e., given any arbitrary set element x ∈ X,
compute a string x̂ that canonically represents x.

12

3. There exists a distinguished element x0 ∈ X, called the origin, such that
its bit-string representation is known.

4. There exists an efficient algorithm that given (some bit-string representa-
tions of) any g ∈ G and any x ∈ X, outputs g ? x.

A cryptographic group action also needs to have some hard problems. Recall
that a family of efficiently computable functions fk : X → Y is one way if
computing f−1k is hard.

Definition 14. Let (G,X, ?) be an EGA. Define the functions

fx : G→ X,

g 7→ g ? x,

πg : X → X,

x 7→ g ? x.

The group action is said to be:

1. One-way if the family of functions fx is one-way.

2. Weakly unpredictable if the family of permutations πg is weakly unpre-
dictable, i.e., if given a list of random pairs (x, πg(x)) it is hard to guess
πg(x

∗) for a random x∗ not in the list.

3. Weakly pseudorandom if the family of permutations πg is weakly pseu-
dorandom, i.e., if it is hard to distinguish between a list of random pairs
(x, πg(x)) and one of random pairs (x, π(x)), where π is a uniformly drawn
permutation of X.

Exercise 19. Let G be an effective group of order p. Define an effective group
action on G so that one-wayness is equivalent to DLP. What are unpredictability
and pseudorandomness equivalent to?

Exercise 20. Instantiate key exchange and public key encryption from an EGA.
What assumption can the security of these primitives be based on?

8 Restricted effective group actions

It may come as a surprise that no strictu sensu post-quantum EGA is currently
known. The group action of complex multiplication used in CSIDH and related
protocols comes close to a pq-EGA, however it fails to satisfy the last axiom:
efficiently evaluating g ? x for any g ∈ G.

For this reason we introduce a restricted version of EGA, which closely mod-
els the algorithmic properties of isogeny group actions. The hardness assump-
tions will stay unchanged.

Definition 15 (Restricted effective group action — REGA). Let (G,X, ?) be
a group action and let ~g = (g1, . . . , gn) be a (not necessarily minimal) gener-
ating set for G. The action is said to be ~g-restricted effective, if the following
properties are satisfied:

13

1. G is finite and n = polylog(#G).

2. The set X is finite and there exist efficient algorithms for: Membership
testing, i.e., to decide if a bit string represents a valid set element; and
Unique representation, i.e., to compute a string x̂ that canonically repre-
sents any given set element x ∈ X.

3. There exists a distinguished element x0 ∈ X, called the origin, such that
its bit-string representation is known.

4. There exists an efficient algorithm that given any 1 ≤ i ≤ n and any bit
string representation of x ∈ X, outputs gi ? x and g−1i ? x.

In the last axiom, we see how REGAs differ from EGAs: in this case, there
is only a short list of group elements gi for which we can efficiently compute
gi ? x. This corresponds well to the case of complex multiplication, where we
can only efficiently compute the action of low norm ideals (see lecture notes of
previous weeks).

Despite this limitation, we can still evaluate in polynomial time the action of
exponentially many elements of G. Indeed, the action of any polynomially sized
linear combination

∏n
i=1 g

ei
i can be evaluated in

∑n
i=1 |ei| steps by successively

computing the action of each component. For example, restricting exponents to
a box ei ∈ [−r, r], the action of as many as (2r+ 1)n distinct elements of G can
be computed. This is precisely how the group action is evaluated in CSIDH.

Remark 16. Abstractly, a REGA can be viewed as a group action of Zn on X,
given by

(e1, . . . , en) ? x :=
(∏

geii
)
? x,

where the cost of evaluating the action depends on the norm of the vectors in
Zn.

The action is not free, however there exists a subgroup Λ ⊂ Zn, called the
relation lattice of (g1, . . . , gn), such that ~e ? x = x if and only if ~e ∈ Λ. Then
the induced action by Zn/Λ is regular.

Exercise 21. Recast the key exchange and public key encryption protocols of
Exercice 20 in the context of REGAs. Is security affected?

Although we explained how to efficiently evaluate the action of exponentially
many elements of G, possibly all of them, we still do not have an EGA. Indeed
the representation of elements of G as products

∏n
i=1 g

ei
i is not unique, and not

all such representations can be efficiently evaluated: as soon as the vector of
exponents ~e has super-polynomial norm, we fail to satisfy the axioms of EGAs.

Nevertheless, a REGA can be turned into a pretty good approximation of
an EGA3 through a pre-computation of the relation lattice. This is the main
idea behind the CSI-FiSh signature scheme [6]. The details of the construction

3By “pretty good” we mean that this is still not an EGA in the asymptotic sense of
complexity theory, but may behave like one in practice.

14

are out of the scope of these notes, but have been discussed in Ward Beullens’
lecture notes [3]. Note that, without this pre-computation, signatures purely
based on REGAs are much less efficient [17, 21].

9 Oblivious transfer

Oblivious transfer (OT) is possibly the simplest “advanced” primitive one may
design from (R)EGA. It is one of foundational primitives of secure multi-party
computation, and a building block for several advanced protocols. There are
many variants of OT, but they all aim at realizing roughly the same function-
ality: a sender S possesses two messages m0,m1, and a receiver R wishes to
learn only one of them, without the sender knowing which.

Several protocols for OT are known from discrete logarithm group, and some
of them may be adapted to the (R)EGA setting. One of the simplest such
protocols, in the authors’ own words, is the Chou–Orlandi scheme [14]. It is a
3-message protocol inspired by the DH key exchange. Given a group G = 〈g〉 of
order p, a hash function H and an encryption scheme (Ek, Dk) (where Ek(m)
means “encrypt m under key k” and Dk(c) means “decrypt c”), it proceeds as
follows:

1. S generates a secret 1 ≤ s ≤ p, sends A = gs to R.

2. Let β ∈ {0, 1} be a bit indicating the message mβ that R wishes to learn;
R generates a secret 1 ≤ r ≤ p and sends B = Aβgr to S.

3. S derives two keys:

• k0 = H(Bs), and

• k1 = H((B/A)s);

it sends c0 := Ek0(m0) and c1 := Ek1(m1) to R.

4. R computes kβ = H(Ar) and recovers mβ = Dkβ (cβ).

Exercise 22. Prove that the Chou–Orlandi scheme is correct, i.e., that R learns
mi at the end of the protocol.

As described, this OT protocol is only secure against semi-honest adversaries,
i.e., curious adversaries who follow the protocol, but want to learn information
they are not supposed to learn (β in the case of S, or m1−β in the case of R).

Exercise 23. Show that the Chou–Orlandi protocol is statistically secure against
curious S. What security assumptions are needed to prove security against cu-
rious R?

Exercise 24. Propose a modification of the Chou–Orlandi protocol that works
for (R)EGA. Hint: start by modifying the protocol to use only exponentiation
and no multiplication (unlike in steps 2 and 3).

15

If you are stuck with the last exercise, check out [30, Fig. 2]. As it turns out,
this protocol is not secure in the CSIDH setting without using a trusted setup
(i.e., a trusted third party generates the system parameters and does not try to
learn any secrets afterwards). This is because the CSIDH group action enjoys
one special property that is not captured by the axioms of (R)EGA.

Theorem 17 (A twisted symmetry in CSIDH). In the CSIDH group action,
there exists a special element x0 ∈ X such that given only g ? x0 the element
g−1 ? x0 can be computed efficiently.

Exercise 25. Let x ∈ X be the origin element (playing the same role as the
generator g) in the modified Chou–Orlandi protocol. Explain how R can cheat
if it knows t such that x = t ? x0, where x0 is the special element above.

As far as we know, this is the only algebraic property that sets CSIDH
apart from a generic REGA. Remarkably, this property can be used to reduce
the number of messages in the modified Chou–Orlandi protocol from 3 to 2.
See [30, Fig. 2].

Other OT protocols based on isogenies have been proposed in [2, 40, 20, 1].

10 OPRF

We saw that the function fk : g 7→ gk is a wUF if CDH is hard, and it is in
fact also weakly pseudorandom if DDH is hard. However fk is only a wPRF,
because it is a group homomorphism: knowing (x, fk(x)), and being allowed to
query fk on xa, it is easy to distinguish fk from a random function by checking
that f(xa) = f(x)a.

To break the homomorphism, we can introduce a hash function as we did in
Section 4.3: the function

fk : x 7→ H2(x,H1(x)k),

where H1 is a hash function with range G, is a PRF, assuming DDH is hard
and H1 and H2 are modeled as random oracles. There is nothing spectacular
about a PRF in the ROM, however what’s more interesting is that this PRF
supports the oblivious evaluation protocol we described in Section 4.3.

It is tempting to try and replicate the construction with a (R)EGA. We
know by hypothesis that πg : x 7→ g ? x is a wPRF. To define a PRF, the first
step would be to define a hash function H1 : {0, 1}∗ → X, and rather one that
behaves like a random oracle. The existence of such a function is not postulated
by (R)EGA, so it has to be seen whether a specific instantiation supports it.4

We are out of luck, here: finding such a hash function is a major open problem
for isogeny based cryptography, that is essentially equivalent to Problem 14.

4The existence of a random oracle with range in a DL group is not supported by the
axioms of DL groups either, but it turns out that for most DL groups (e.g., elliptic curves)
such functions exist.

16

A celebrated way to construct PRFs from the DDH assumption alone is
due to Naor and Reingold [33]. If G = 〈g〉 is a group of order p, the key
space is defined as (Z/pZ)n+1, and the input space as {0, 1}n, for some security
parameter n. The function family is then defined as

fk0,k1,...,kn : (b1, . . . , bn) 7→ gk0
∏n
i=1 k

bi
i .

Exercise 26. Give an analogue of the Naor–Reingold PRF based on EGA. Do
you notice any difference if instead we based it on a REGA?

If in the previous weeks you were fascinated by the isogeny graphs and
complex multiplication, the following exercise should appeal to you.

Exercise 27. Explain the Naor–Reingold PRF in terms of walks in a Cayley
graph. Use this explanation to justify pseudorandomness.

Variants of the Naor–Reingold PRF based on group actions were simultane-
ously introduced in [1, 9, 32]. It was [9] that introduced an oblivious evaluation
protocol for it, using OT as a subroutine. The protocol is amazingly simple.
Let S be the server holding the key (k0, . . . , kn), and let C be the client wanting
to evaluate fk at (b1, . . . , bn).

1. S chooses a random ri ∈ G for each 1 ≤ i ≤ n.

2. For each i, client and server engage in an OT protocol to transfer the value
mi = kbii ri to C.

3. S computes x′ = (k0
∏n
i=1 r

−1
i) ? x0 and sends it to C.

4. C computes (
∏n
i=1mi) ? s

′ to obtain the output value.

Exercise 28. Prove that the OPRF protocol above is correct. Sketch the proof
of security.

11 Secret sharing “in the exponents”

Secret sharing is a technique to decompose a secret s into n shares si such that
the value s can only be recovered by assembling together some of the shares.
The simplest such scheme is linear secret sharing, where s is simply decomposed
as

s = s1 + s2 + · · ·+ sn

for si uniformly sampled in some additive group (e.g., Zλ2 , or Z/pZ). It is clear
that all shares si are necessary to recover s.

A more advanced scheme is Shamir’s threshold secret sharing [37], which
uses polynomial interpolation in a finite field to break s into n shares, such that
any k ≤ n of them can be used to reconstruct s. The idea is to sample a random
polynomial f(X) of degree k − 1 with coefficients in Fp, and to define s = f(0)
and si = f(i).

17

Exercise 29. Give an algorithm to compute s from k shares si “without recom-
puting” all of f(X).

A common goal in multi-party computation is to compute the output of
some cryptographic algorithm (e.g., decryption, signing, etc.), where the secrets
have been shared. Ideally, the participants to the protocol would only learn the
output (e.g., the plaintext), but nothing else (including the shared secret). An
important technique that applies to DL protocols is “Shamir’s secret sharing in
the exponents”, introduced by Desmedt and Frankel [22].

For simplicity, let’s start from the case of decrypting ElGamal ciphertexts
with linearly shared secrets. Let G = 〈g〉 be a group of order p, let 1 ≤ s ≤ p
be a secret key and let gs be the associated public key. Decompose the secret s
as

s = s1 + · · ·+ sn

and distribute the si to n participants, numbered from 1 to n. Let C =
(C1, C2) = (gr, gsr · m) be an ElGamal ciphertext, the goal is for the par-
ticipants to compute m without anyone learning s. The protocol proceeds as
follows:

1. Each participant broadcasts Csi1 = gsir;

2. Each participant computes gsr =
∏
gsir;

3. Each participant computes m = C2/g
sr.

Exercise 30. Generalize the protocol above to a k-out-of-n threshold protocol
where s has been shared using Shamir’s secret sharing.

Exercise 31. Define the analogous distributed protocol for Schnorr signatures.

It is tempting to generalize the protocol above to cryptographic group ac-
tions: decompose s ∈ G as s = s1 + · · · sn, then have each participant broadcast
si ? C1. However we face a problem in step 2: there is no equivalent of the
product

∏
gsir in the group action setting.

Unfortunately, we know no real way around this problem. What is proposed
in [19] is to define a weaker form of distributed protocol where the participants
act in sequence rather than in parallel. Given a ciphertext

C = (C1, C2) = (r ? x,H((sr) ? x)⊕m),

let x0 = r ? x. For each i from 1 to n, participant i computes xi = si ? xi−1
and passes this value to participant i + 1. The last participant can compute
xn = sn ? xn−1 = (sr) ? x, and thus recover the plaintext m.

It is now tempting to give as an exercise to generalize the idea above to
Shamir’s secret sharing, but there is one additional difficulty that calls for, at
least, a hint. Being based on polynomial interpolation, Shamir’s secret sharing
requires the shares si to be elements of a ring. Here, the si only belong to a
group. The trick is to go “in the exponents of the exponents”

18

Let (G,X, ?) be an EGA and assume that G = 〈g〉 is cyclic of order N , then
there is a (group) homomorphism

Z/NZ→ G,

a 7→ ga.

Hence, we can define an (additive) group action ∗ of Z/NZ on X by

a ∗ x := ga ? x.

Almost magically, all the pieces now fit in place and we can define threshold
decryption using Shamir’s secret sharing.

Exercise 32. (hard?) Generalize the distributed EGA–ElGamal decryption pro-
tocol above to Shamir’s secret sharing.

Note that for this generalization to work several conditions must be met:

• (G,X, ?) must absolutely be an EGA (exercise: explain why a REGA is
not sufficient);

• G must be cyclic, or at least contain a large cyclic group, with a known
generator g;

• The order N of g must be known, and the smallest prime divisor of N
must be larger than the number n of participants.

Despite all the difficulties involved, the good news is that by solving this exer-
cise you become a pirate: https://www.youtube.com/watch?v=gjqbgUVZcwI!
If you’re stuck, have a look at [19]. Further generalizations of multi-party pro-
tocols based on group actions appeared in [16, 4].

12 Other protocols

We’re at the 19 pages mark, but we’re far from having exhausted the protocols
based on group actions. Explaining all of them would take us too far, so we just
list some works here for completeness:

• [1] defines several protocols based on wPR-(R)EGA, including hash proof
systems and dual mode encryption.

• [1] also defines a new, plausible, security assumption for (R)EGA they
call linear hidden shift, from which they derive a key-dependent-message-
CPA-secure symmetric encryption scheme.

• [23] instantiates symmetric updatable encryption from EGA (but not REGA)
of known order, and discusses obstacles to instantiating asymmetric up-
datable encryption.

• [5] instantiates ring signatures from (R)EGA.

19

https://www.youtube.com/watch?v=gjqbgUVZcwI

• Exercise: help me complete this list with the constructions I’m forgetting.

Despite the remarkable number of different primitives that can be instanti-
ated from group actions, several important ones are missing, and appear to be
difficult to instantiate. Let me give some examples.

Problem 33. Instantiate (simply) homomorphic encryption from (R)EGA.

Problem 34. Instantiate collision-resistant hash functions from (R)EGA (i.e.,
a hash function where collision resistance reduces to a plausible assumption for
(R)EGAs).

Problem 35. Instantiate identity based or attribute based encryption from
(R)EGA.

References

[1] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patran-
abis. Cryptographic group actions and applications. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume 12492
of LNCS, pages 411–439. Springer, Heidelberg, December 2020. doi:

10.1007/978-3-030-64834-3_14.

[2] Paulo Barreto, Glaucio Oliveira, and Waldyr Benits. Supersingular isogeny
oblivious transfer. Cryptology ePrint Archive, Report 2018/459, 2018.
https://eprint.iacr.org/2018/459.

[3] Ward Beullens. Week 4: Signatures based on SIDH and CSIDH, 2021.
URL: https://homes.esat.kuleuven.be/~wbeullen/week4_1.pdf.

[4] Ward Beullens, Lucas Disson, Robi Pedersen, and Frederik Vercauteren.
CSI-RAShi: Distributed key generation for CSIDH. Cryptology ePrint
Archive, Report 2020/1323, 2020. https://eprint.iacr.org/2020/1323.

[5] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and
Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices.
In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II,
volume 12492 of LNCS, pages 464–492. Springer, Heidelberg, December
2020. doi:10.1007/978-3-030-64834-3_16.

[6] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh:
Efficient isogeny based signatures through class group computations. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I,
volume 11921 of LNCS, pages 227–247. Springer, Heidelberg, December
2019. doi:10.1007/978-3-030-34578-5_9.

[7] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
delay functions. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 757–788. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96884-1_25.

20

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://eprint.iacr.org/2018/459
https://homes.esat.kuleuven.be/~wbeullen/week4_1.pdf
https://eprint.iacr.org/2020/1323
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-319-96884-1_25

[8] Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the Weil pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 213–229. Springer, Heidelberg, August 2001. doi:10.1007/

3-540-44647-8_13.

[9] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom
functions from isogenies. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 520–550. Springer,
Heidelberg, December 2020. doi:10.1007/978-3-030-64834-3_18.

[10] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248
of LNCS, pages 514–532. Springer, Heidelberg, December 2001. doi:

10.1007/3-540-45682-1_30.

[11] Gilles Brassard and Moti Yung. One-way group actions. In Alfred J.
Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of
LNCS, pages 94–107. Springer, Heidelberg, August 1991. doi:10.1007/

3-540-38424-3_7.

[12] Jeffrey Burdges and Luca De Feo. Delay encryption. Cryptology ePrint
Archive, Report 2020/638, 2020. https://eprint.iacr.org/2020/638.

[13] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. CSIDH: An efficient post-quantum commutative group action. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III,
volume 11274 of LNCS, pages 395–427. Springer, Heidelberg, December
2018. doi:10.1007/978-3-030-03332-3_15.

[14] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious trans-
fer. In Kristin E. Lauter and Francisco Rodŕıguez-Henŕıquez, editors, LAT-
INCRYPT 2015, volume 9230 of LNCS, pages 40–58. Springer, Heidelberg,
August 2015. doi:10.1007/978-3-319-22174-8_3.

[15] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint
Archive, Report 2006/291, 2006. https://eprint.iacr.org/2006/291.

[16] Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh secret
keys to produce an actively secure distributed signing protocol. In Jin-
tai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography -
11th International Conference, PQCrypto 2020, pages 169–186. Springer,
Heidelberg, 2020. doi:10.1007/978-3-030-44223-1_10.

[17] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signa-
tures from class group actions. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 759–789.
Springer, Heidelberg, May 2019. doi:10.1007/978-3-030-17659-4_26.

21

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1007/3-540-38424-3_7
https://eprint.iacr.org/2020/638
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-319-22174-8_3
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-44223-1_10
https://doi.org/10.1007/978-3-030-17659-4_26

[18] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifi-
able delay functions from supersingular isogenies and pairings. In Steven D.
Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume
11921 of LNCS, pages 248–277. Springer, Heidelberg, December 2019.
doi:10.1007/978-3-030-34578-5_10.

[19] Luca De Feo and Michael Meyer. Threshold schemes from isogeny assump-
tions. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 187–212.
Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45388-6_7.

[20] Cyprien de Saint Guilhem, Emmanuela Orsini, Christophe Petit, and
Nigel P. Smart. Semi-commutative masking: A framework for isogeny-
based protocols, with an application to fully secure two-round isogeny-
based OT. In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors,
CANS 20, volume 12579 of LNCS, pages 235–258. Springer, Heidelberg,
December 2020. doi:10.1007/978-3-030-65411-5_12.

[21] Thomas Decru, Lorenz Panny, and Frederik Vercauteren. Faster SeaSign
signatures through improved rejection sampling. In Jintai Ding and
Rainer Steinwandt, editors, Post-Quantum Cryptography - 10th Interna-
tional Conference, PQCrypto 2019, pages 271–285. Springer, Heidelberg,
2019. doi:10.1007/978-3-030-25510-7_15.

[22] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer,
Heidelberg, August 1990. doi:10.1007/0-387-34805-0_28.

[23] Edward Eaton, David Jao, and Chelsea Komlo. Towards post-quantum
updatable public-key encryption via supersingular isogenies. Cryptology
ePrint Archive, Report 2020/1593, 2020. URL: https://eprint.iacr.

org/2020/1593.

[24] Edward Eaton and Douglas Stebila. The ”quantum annoying” prop-
erty of password-authenticated key exchange protocols. Cryptology ePrint
Archive, Report 2021/696, 2021. URL: https://ia.cr/2021/696.

[25] Steven D Galbraith. Mathematics of public key cryptography. Cam-
bridge University Press, 2012. URL: https://www.math.auckland.ac.

nz/~sgal018/crypto-book/crypto-book.html.

[26] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
cryptographers. Discrete Applied Mathematics, 156(16):3113 – 3121, 2008.
Applications of Algebra to Cryptography. doi:10.1016/j.dam.2007.12.

010.

[27] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-
efficient and composable password-protected secret sharing (or: How to
protect your bitcoin wallet online). In 2016 IEEE European Symposium

22

https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-45388-6_7
https://doi.org/10.1007/978-3-030-65411-5_12
https://doi.org/10.1007/978-3-030-25510-7_15
https://doi.org/10.1007/0-387-34805-0_28
https://eprint.iacr.org/2020/1593
https://eprint.iacr.org/2020/1593
https://ia.cr/2021/696
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://doi.org/10.1016/j.dam.2007.12.010
https://doi.org/10.1016/j.dam.2007.12.010

on Security and Privacy (EuroS&P), pages 276–291. IEEE, 2016. doi:

10.1109/EuroSP.2016.30.

[28] Takeshi Koshiba and Katsuyuki Takashima. Pairing cryptography meets
isogeny: A new framework of isogenous pairing groups. Cryptology ePrint
Archive, Report 2016/1138, 2016. https://eprint.iacr.org/2016/1138.

[29] Takeshi Koshiba and Katsuyuki Takashima. New assumptions on isogenous
pairing groups with applications to attribute-based encryption. In Kwangsu
Lee, editor, ICISC 18, volume 11396 of LNCS, pages 3–19. Springer, Hei-
delberg, November 2019. doi:10.1007/978-3-030-12146-4_1.

[30] Yi-Fu Lai, Steven D. Galbraith, and Cyprien de Saint Guilhem. Compact,
efficient and UC-secure isogeny-based oblivious transfer. Cryptology ePrint
Archive, Report 2020/1012, 2020. https://eprint.iacr.org/2020/1012.

[31] Ueli M. Maurer and Stefan Wolf. Lower bounds on generic algorithms
in groups. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of
LNCS, pages 72–84. Springer, Heidelberg, May / June 1998. doi:10.

1007/BFb0054118.

[32] Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. SiGamal: A su-
persingular isogeny-based PKE and its application to a PRF. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, vol-
ume 12492 of LNCS, pages 551–580. Springer, Heidelberg, December 2020.
doi:10.1007/978-3-030-64834-3_19.

[33] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In 38th FOCS, pages 458–467. IEEE Computer
Society Press, October 1997. doi:10.1109/SFCS.1997.646134.

[34] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.
doi:10.4230/LIPIcs.ITCS.2019.60.

[35] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles
and timed-release crypto. Technical report, Cambridge, MA, USA, 1996.
URL: https://people.csail.mit.edu/rivest/pubs/RSW96.pdf.

[36] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem
Based On Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.
https://eprint.iacr.org/2006/145.

[37] Adi Shamir. How to share a secret. Communications of the Association
for Computing Machinery, 22(11):612–613, November 1979.

[38] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997. doi:10.1007/3-540-69053-0_
18.

23

https://doi.org/10.1109/EuroSP.2016.30
https://doi.org/10.1109/EuroSP.2016.30
https://eprint.iacr.org/2016/1138
https://doi.org/10.1007/978-3-030-12146-4_1
https://eprint.iacr.org/2020/1012
https://doi.org/10.1007/BFb0054118
https://doi.org/10.1007/BFb0054118
https://doi.org/10.1007/978-3-030-64834-3_19
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18

[39] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1992.

[40] Vanessa Vitse. Simple oblivious transfer protocols compatible with su-
persingular isogenies. In Johannes Buchmann, Abderrahmane Nitaj,
and Tajje eddine Rachidi, editors, AFRICACRYPT 19, volume 11627
of LNCS, pages 56–78. Springer, Heidelberg, July 2019. doi:10.1007/

978-3-030-23696-0_4.

[41] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478
of LNCS, pages 379–407. Springer, Heidelberg, May 2019. doi:10.1007/

978-3-030-17659-4_13.

24

https://doi.org/10.1007/978-3-030-23696-0_4
https://doi.org/10.1007/978-3-030-23696-0_4
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-17659-4_13

	I Isogenous Pairing Groups
	Pairings
	The Weil pairing
	Pairing-friendly curves
	Quantum annoying
	PRF
	VRF
	(V)OPRF

	Isogeny walks and sequential computation
	Delay protocols

	II Cryptographic Group Actions
	Effective group actions
	Restricted effective group actions
	Oblivious transfer
	OPRF
	Secret sharing ``in the exponents''
	Other protocols

