Explicit isogenies in quadratic time in any characteristic

Luca De Feo joint work with Cyril Hugounenq, Jérôme Plût, Éric Schost

Université de Neuchâtel

September 28, 2016

Let E be an elliptic curve...

Let E be an elliptic curve... forget it!

Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent complex numbers. Set

 $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$

 \mathbb{C}/Λ is an elliptic curve.

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

$$\alpha \Lambda_1 = \Lambda_2$$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

$$\alpha \Lambda_1 = \Lambda_2$$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

 $\alpha \Lambda_1 = \Lambda_2$ The *j*-invariant $j(\Lambda)$ classifies elliptic curves up to homothety

homotetic if there exist $\alpha \in \mathbb{C}$ such

(isomorphism).

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Two lattices are homotetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha \Lambda_1 = \Lambda_2$

Multiplication

Multiplication

Multiplication

$Multiplication \ + \ homothety$

${\sf Multiplication} + {\sf homothety}$

${\sf Multiplication} + {\sf homothety}$

Torsion subgroups

The ℓ -torsion subgroup is made up by the points

 $\left(\frac{i\omega_1}{\ell},\frac{j\omega_2}{\ell}\right)$

It is a group of rank two

 $egin{aligned} E[\ell] &= \langle a, b
angle \ &\simeq (\mathbb{Z}/\ell\mathbb{Z})^2 \end{aligned}$

Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$

 ϕ is a morphism of complex Lie groups and is called an isogeny.

Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$

 ϕ is a morphism of complex Lie groups and is called an isogeny.

Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$

 ϕ is a morphism of complex Lie groups and is called an isogeny.

Taking a point *b* not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point *b* not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point *b* not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}:\mathbb{C}/\Lambda_2\to\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Isogenies over arbitrary fields

Isogenies are just the right notion of morphism for elliptic curves

- Surjective group morphisms.
- Algebraic maps (i.e., defined by polynomials).

 $0 \to H \to E \xrightarrow{\phi} E' \to 0$

The kernel H determines the image curve E' up to isomorphism

 $E/H \stackrel{\text{\tiny def}}{=} E'.$

Isogeny degree

Neither of these definitions is quite correct, but they nearly are:

- The degree of ϕ is the cardinality of ker ϕ .
- (Bisson) the degree of ϕ is the time needed to compute it.

The computational point of view

In practice: an isogeny ϕ is just a rational fraction (or maybe two)

$$\frac{N(x)}{D(x)} = \frac{x^r + \dots + n_1 x + n_0}{x^{r-1} + \dots + d_1 x + d_0} \in k(x), \quad \text{with } \ell = \deg \phi,$$

and D(x) vanishes on ker ϕ .

Vélu's formulas Input: The kernel polynomial D(x). Output: The curve E/H and the rational fraction N/D. Complexity: $\tilde{O}(r)$.

Sidenote: we are only interested in *rational* isogenies, i.e. such that N/D has coefficients in the base field (i.e. ϕ is Galois invariant).

Motivation

Explicit isogeny problem

Let \mathbb{F}_q be a finite field of characteristic *p*. Given an integer *r* and two *r*-isogenous elliptic curves *E*, *E'* defined over \mathbb{F}_q , compute an *r*-isogeny $\phi : E \to E'$.

Special instances of this problem appear in various applications:

- Schoof-Elkies-Atkin point counting algorithm,
- ECC cryptanalysis: [Gaudry, Hess, Smart '02],
- Hash functions: [Charles, Goren, Lauter '07],
- Trapdoors: [Teske '06],
- Post quantum cryptography: [Rotostev, Stolbunov '06], [De Feo, Jao, Plût '11].

Motivation

Explicit isogeny problem

Let \mathbb{F}_q be a finite field of characteristic *p*. Given an integer *r* and two *r*-isogenous elliptic curves *E*, *E'* defined over \mathbb{F}_q , compute an *r*-isogeny $\phi : E \to E'$.

Special instances of this problem appear in various applications:

- Schoof-Elkies-Atkin point counting algorithm,
- ECC cryptanalysis: [Gaudry, Hess, Smart '02],
- Hash functions: [Charles, Goren, Lauter '07],
- Trapdoors: [Teske '06],
- Post quantum cryptography: [Rotostev, Stolbunov '06], [De Feo, Jao, Plût '11].

Disclaimer: however, the general version we are going to solve here does not improve the theoretical complexity¹ of any of these!

¹It possibly gives a minor practical speed-up for SEA in *medium* characteristic, though :)

Previous work

Let p be the characteristic of \mathbb{F}_q .

- [Elkies '92/'98], [Bostan, Morain, Salvy, Schost '08] use $\tilde{O}(r)$ operations in \mathbb{F}_q , work only for r < 2p. Specific to the SEA case.
- [Couveignes '94] any characteristic, $\tilde{O}(r^3 p^{O(1)})$ operations.
- [Lercier '97] only *p* = 2.
- [Couveignes '96], [LDF '10] any characteristic, $\tilde{O}(r^2 p^{O(1)})$ operations.
- [Lercier, Sirvent '08], [Lairez, Vaccon '16] works for every p using $\tilde{O}(r^2)$ operations in \mathbb{F}_q . Specific to the SEA case.

Our goal: modify Couveignes' algorithm to obtain an algorithm with complexity $\tilde{O}(r^2)$ but with no exponential dependency in $\log(p)$.

Torsion points of elliptic curves

Torsion points

Let *E* be an elliptic curve defined over a finite field \mathbb{F}_q , and let m > 0

$$E[m] = \{P \in E(\bar{\mathbb{F}}_q), mP = 0_E\}$$

For ordinary elliptic curves

$$\begin{split} E[\ell^k] &\simeq \mathbb{Z}/\ell^k \mathbb{Z} \times \mathbb{Z}/\ell^k \mathbb{Z} \quad \text{with } \ell \neq p \\ E[p^k] &\simeq \mathbb{Z}/p^k \mathbb{Z} \end{split}$$

Torsion points of elliptic curves

Torsion points

Let E be an elliptic curve defined over a finite field \mathbb{F}_q , and let m > 0

$$E[m] = \{P \in E(\bar{\mathbb{F}}_q), mP = 0_E\}$$

For ordinary elliptic curves

$$\begin{split} & E[\ell^k] \simeq \mathbb{Z}/\ell^k \mathbb{Z} \times \mathbb{Z}/\ell^k \mathbb{Z} \quad \text{with } \ell \neq p \\ & E[p^k] \simeq \mathbb{Z}/p^k \mathbb{Z} \end{split}$$

Couveignes' algorithm (compute an *r*-isogeny $\phi: E \rightarrow E'$)

Compute ϕ by interpolation over $E[p^k]$:

- Compute generators P, P' of $E[p^k], E'[p^k]$;
- Interpolate ϕ , assuming it maps $uP \mapsto uP'$ for all $u \in \mathbb{Z}/p^k\mathbb{Z}$;
- Test whether φ is an isogeny.
 In case it is not, replace P' with a multiple aP' and start again.

Couveignes algorithm (1996)

Input: E, E' two *r*-isogenous curves on \mathbb{F}_{p^n} , Output: $\phi: E \to E'$ of degree *r*.

- Select the least k such that $p^k > 4r$;
- Occupies Compute generators P of $E[p^k]$ and P' of $E'[p^k]$;
- Sompute $T = \prod (X x(uP))$ with $1 \le u \le \frac{p^k 1}{2}$;

• For each
$$a \in \left(\mathbb{Z}/p^k\mathbb{Z}\right)^{ imes}$$
:

- Compute the interpolation polynomial $L: x(uP) \mapsto x(a(uP')); \quad \tilde{O}(rp^{O(1)})$
- Use a rational reconstruction algorithm to compute a rational fraction $F = L \mod T$ of degrees (r, r 1); $\tilde{O}(r)$
- If F defines an isogeny of degree r, return it and stop.

O(r)

Couveignes algorithm (1996)

Input: E, E' two *r*-isogenous curves on \mathbb{F}_{p^n} , Output: $\phi: E \to E'$ of degree *r*.

- Select the least k such that $p^k > 4r$;
- **②** Compute generators P of $E[p^k]$ and P' of $E'[p^k]$;
- Sompute $T = \prod (X x(uP))$ with $1 \le u \le \frac{p^k 1}{2}$;

• For each
$$a \in \left(\mathbb{Z}/p^k\mathbb{Z}\right)^{\times}$$
:

- Compute the interpolation polynomial $L: x(uP) \mapsto x(a(uP')); \quad \tilde{O}(rp^{O(1)})$
- Use a rational reconstruction algorithm to compute a rational fraction $F = L \mod T$ of degrees (r, r 1); $\tilde{O}(r)$
- If F defines an isogeny of degree r, return it and stop.

Our brilliant idea!

Replace $E[p^k]$ by $E[\ell^k]$ for a small prime $\ell \neq p$.

O(r)

An ℓ -adic Couveignes' algorithm?

Our goal is to work with $E[\ell^k] \simeq (\mathbb{Z}/\ell^k\mathbb{Z})^2$ instead of $E[p^k]$ to remove the polynomial dependency in p.

•
$$E[p^k] = \langle P \rangle \simeq \left(\mathbb{Z}/p^k \mathbb{Z} \right)$$
 with $p^k \approx r$

•
$$E[\ell^k] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell^k \mathbb{Z}) \times (\mathbb{Z}/\ell^k \mathbb{Z})$$
 with $\ell^{2k} \approx r$

An *l*-adic Couveignes' algorithm?

Our goal is to work with $E[\ell^k] \simeq (\mathbb{Z}/\ell^k\mathbb{Z})^2$ instead of $E[p^k]$ to remove the polynomial dependency in p.

•
$$E[p^k] = \langle P \rangle \simeq (\mathbb{Z}/p^k\mathbb{Z})$$
 with $p^k \approx r$

•
$$E[\ell^k] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell^k \mathbb{Z}) \times (\mathbb{Z}/\ell^k \mathbb{Z})$$
 with $\ell^{2k} \approx r$

			_	_	
-		-	_		-
- 1 1		- 1	<i>(</i> 1		
	_	-	•••		•
\sim		~	~		~

Let $P \in E$ and $P' \in E'$

$$P \mapsto aP' \qquad a \in (\mathbb{Z}/p^k\mathbb{Z})^*$$

 $\Rightarrow O(r)$ possibilities.

 $\ell\text{-adic}$ Let $P, Q \in E$ and $P', Q' \in E'$ $\begin{pmatrix} P \\ Q \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} P' \\ Q' \end{pmatrix}$ with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}/\ell^k\mathbb{Z})$ invertible. $\Rightarrow O(r^2) \text{ possibilities.}$

An *l*-adic Couveignes' algorithm?

Our goal is to work with $E[\ell^k] \simeq (\mathbb{Z}/\ell^k\mathbb{Z})^2$ instead of $E[p^k]$ to remove the polynomial dependency in p.

•
$$E[p^k] = \langle P \rangle \simeq (\mathbb{Z}/p^k\mathbb{Z})$$
 with $p^k \approx r$

•
$$E[\ell^k] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell^k \mathbb{Z}) \times (\mathbb{Z}/\ell^k \mathbb{Z})$$
 with $\ell^{2k} \approx r$

p-adic

Let $P \in E$ and $P' \in E'$

$$P \mapsto aP' \qquad a \in (\mathbb{Z}/p^k\mathbb{Z})^*$$

 $\Rightarrow O(r)$ possibilities.

 $\ell\text{-adic}$ Let $P, Q \in E$ and $P', Q' \in E'$ $\begin{pmatrix} P \\ Q \end{pmatrix} \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} P' \\ Q' \end{pmatrix}$ with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}/\ell^k\mathbb{Z})$ invertible. $\Rightarrow O(r^2)$ possibilities.

Not so brilliant, after all?

Frobenius vs isogenies

Definition (Frobenius Endomorphism)

E an ordinary elliptic curve defined over \mathbb{F}_q . The function

$$\pi:(x,y)\mapsto(x^q,y^q)$$

is called Frobenius endomorphism. It satisfies a quadratic equation

$$\pi^2 - t_\pi \pi + q = 0.$$

We are only working with rational isogenies $\phi: E \to E'$, i.e.

$$\pi_{E'} \circ \phi = \phi \circ \pi_E.$$

Subgroup of size ℓ

 $\Leftrightarrow \qquad \ell\text{-isogeny}$

 Subgroup of size ℓ \Leftrightarrow ℓ -isogeny Subgroup of size ℓ stable by π \Leftrightarrow Rational ℓ -isogeny

Assume that π splits modulo ℓ : i.e. its minimal polynomial factors as

 $(\pi - \lambda)(\pi - \mu)$ with $\lambda \neq \mu \mod \ell$

 $\begin{array}{lll} \mbox{Subgroup of size } \ell & \Leftrightarrow & \ell\mbox{-isogeny} \\ \mbox{Subgroup of size } \ell \mbox{ stable by } \pi & \Leftrightarrow & \mbox{Rational } \ell\mbox{-isogeny} \\ \end{array}$

Assume that π splits modulo ℓ : i.e. its minimal polynomial factors as

 $(\pi - \lambda)(\pi - \mu)$ with $\lambda \neq \mu \mod \ell$

Two eigenspaces in $E[\ell] \Rightarrow$ Two rational ℓ -isogenies $\ker(\pi - \lambda), \ker(\pi - \mu)$ of direction λ, μ

Fact

Let ϕ be an *r*-isogeny with $\ell \nmid r$, then ϕ preserves the kernels of the ℓ -isogenies of direction λ, μ .

To interpolate ϕ over $E[\ell^k]$, we want to compute two cyclic ℓ^k -subgroups of direction λ, μ .

Fact

Let ϕ be an *r*-isogeny with $\ell \nmid r$, then ϕ preserves the kernels of the ℓ -isogenies of direction λ, μ .

To interpolate ϕ over $E[\ell^k]$, we want to compute two cyclic ℓ^k -subgroups of direction λ, μ .

Fact

Let ϕ be an *r*-isogeny with $\ell \nmid r$, then ϕ preserves the kernels of the ℓ -isogenies of direction λ, μ .

To interpolate ϕ over $E[\ell^k]$, we want to compute two cyclic ℓ^k -subgroups of direction λ, μ .

• We call $E[\ell^k]_{\lambda} \oplus E[\ell^k]_{\mu}$ a horizontal decomposition;

• SEA literature calls this an isogeny cycle [Couveignes, Morain '94].

Towards an ℓ -adic Couveignes' algorithm (π splits modulo ℓ) Input: E, E' two *r*-isogenous curves on \mathbb{F}_q , Output: $\phi: E \to E'$ of degree *r*.

Fact: ϕ maps $E[\ell^k]_{\lambda} \rightarrow E'[\ell^k]_{\lambda}$ and $E[\ell^k]_{\mu} \rightarrow E'[\ell^k]_{\mu}$.

Select the least k such that $\ell^{2k} > 4r$.

2 Compute
$$\langle P, Q \rangle = E[\ell^k]_{\lambda} \oplus E[\ell^k]_{\mu}$$

and $\langle P', Q' \rangle = E'[\ell^k]_{\lambda} \oplus E'[\ell^k]_{\mu}$

- So For each invertible diagonal matrix $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ in $(\mathbb{Z}/\ell^k \mathbb{Z})^{2 \times 2}$:
 - Compute the interpolation polynomial *L* sending $P \mapsto aP'$ and $Q \mapsto bQ'$;
 - Use a rational reconstruction algorithm to compute a rational fraction F of degrees (r, r 1);
 - **3** If F defines an isogeny of degree r, return it and stop.

Towards an ℓ -adic Couveignes' algorithm (π splits modulo ℓ) Input: E, E' two *r*-isogenous curves on \mathbb{F}_q , Output: $\phi: E \to E'$ of degree *r*.

Fact: ϕ maps $E[\ell^k]_{\lambda} \rightarrow E'[\ell^k]_{\lambda}$ and $E[\ell^k]_{\mu} \rightarrow E'[\ell^k]_{\mu}$.

Select the least k such that $\ell^{2k} > 4r$.

Compute
$$\langle P, Q \rangle = E[\ell^k]_{\lambda} \oplus E[\ell^k]_{\mu}$$

and $\langle P', Q' \rangle = E'[\ell^k]_{\lambda} \oplus E'[\ell^k]_{\mu}$

- **③** For each **invertible diagonal** matrix $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ in $(\mathbb{Z}/\ell^k \mathbb{Z})^{2 \times 2}$: O(r)
 - Compute the interpolation polynomial *L* sending $P \mapsto aP'$ and $Q \mapsto bQ'$;
 - Use a rational reconstruction algorithm to compute a rational fraction F of degrees (r, r 1);
 Õ(r)
 - If F defines an isogeny of degree r, return it and stop.

 $\tilde{O}(r\ell^{O(1)})$

I'm done. Thanks.

Questions?

No?

Ok, wait, I'm not done yet!

Towards the general case

Denote by \mathcal{O} (resp. \mathcal{O}') the endomorphism ring of E (resp. E')

Towards the general case

Denote by \mathcal{O} (resp. \mathcal{O}') the endomorphism ring of E (resp. E')

Towards the general case

Denote by \mathcal{O} (resp. \mathcal{O}') the endomorphism ring of E (resp. E')

A guide to volcano types

Figure: The three shapes of volcanoes of 2-isogenies

In the rest of this talk we consider only volcanoes with cyclic crater (Elkies case).

The Elkies case

Elkies prime

We say that ℓ is an Elkies prime if the characteristic polynomial of π factors over \mathbb{Z}_{ℓ} as

$$\pi^2 - t_\pi \pi + q = (\pi - \lambda)(\pi - \mu), \quad ext{with } \lambda
eq \mu,$$

where $h = v_{\ell} (\lambda - \mu)$ can be ≥ 1 .

Note: $h = v_{\ell}(\lambda - \mu)$ is the height of the ℓ -volcano.

Problem: as long as $k \le h$, the two eigenvalues are undistinguishable:

$$\pi(P) = \lambda P = \mu P$$
 for any $P \in E[\ell^h]$.

From now on, we assume² that $k \ge h + 1$.

²This has no impact on the complexity as the isogeny degree grows, indeed $k \approx \log(r)$.

Proposition (LDF, Hugounenq, Plût, Schost)

In the Elkies case the action of the Frobenius endomorphism π on $E[\ell^{h+1}]$ is conjugate, over \mathbb{Z}_{ℓ} , to a unique matrix

$$\begin{pmatrix} \lambda & a \\ 0 & \mu \end{pmatrix}$$

with $a \in \{1, \ell, \dots, \ell^{h-1}, 0\}$, and a = 0 iff E lies on the crater.

Suppose that E lies on the crater (we can reduce to this case easily).

- ker(π − μ | E[ℓ^k]) is cyclic of size ℓ^k;
- Interpolation maps a cyclic group to a cyclic group;
- $O(\ell^k)$ choices. Happiness!

Problem:

- $\ker(\pi \mu \mid E[\ell^k]) \simeq (\mathbb{Z}/\ell^k) \times (\mathbb{Z}/\ell^h);$
- It contains l^h cyclic subgroups of order l^k;
- Each cyclic subgroup is associated to an isogeny that **starts** horizontal;
- $O(\ell^{k+h})$ choices. Sadness.

Suppose that E lies on the crater (we can reduce to this case easily).

- ker(π − μ | E[ℓ^k]) is cyclic of size ℓ^k;
- Interpolation maps a cyclic group to a cyclic group;
- $O(\ell^k)$ choices. Happiness!

Problem:

- $\ker(\pi \mu \mid E[\ell^k]) \simeq (\mathbb{Z}/\ell^k) \times (\mathbb{Z}/\ell^h);$
- It contains l^h cyclic subgroups of order l^k;
- Each cyclic subgroup is associated to an isogeny that **starts** horizontal;
- $O(\ell^{k+h})$ choices. Sadness.

Trivial fix: compute a basis of $E[\ell^{k+h}]$, only to obtain only a horizontal decomposition of $E[\ell^k]$.

Much better:

- Start with **any** walk of length $k \ge h + 1$;
- First step is horizontal, use it to move to the next curve;
- Compute again a walk of length k (actually only requires computing one step);

 E_{3} E_{1} E_{1}

Trivial fix: compute a basis of $E[\ell^{k+h}]$, only to obtain only a horizontal decomposition of $E[\ell^k]$.

Much better:

- Start with **any** walk of length $k \ge h + 1$;
- First step is horizontal, use it to move to the next curve;
- Compute again a walk of length k (actually only requires computing one step);

 E_{3}

Trivial fix: compute a basis of $E[\ell^{k+h}]$, only to obtain only a horizontal decomposition of $E[\ell^k]$.

Much better:

- Start with **any** walk of length $k \ge h + 1$;
- First step is horizontal, use it to move to the next curve;
- Compute again a walk of length k (actually only requires computing one step);

Trivial fix: compute a basis of $E[\ell^{k+h}]$, only to obtain only a horizontal decomposition of $E[\ell^k]$.

Much better:

- Start with **any** walk of length $k \ge h + 1$;
- First step is horizontal, use it to move to the next curve;
- Compute again a walk of length k (actually only requires computing one step);

Trivial fix: compute a basis of $E[\ell^{k+h}]$, only to obtain only a horizontal decomposition of $E[\ell^k]$.

Much better:

- Start with **any** walk of length $k \ge h + 1$;
- First step is horizontal, use it to move to the next curve;
- Compute again a walk of length k (actually only requires computing one step);

 E_{3} E_{1} E_{1

Trivial fix: compute a basis of $E[\ell^{k+h}]$, only to obtain only a horizontal decomposition of $E[\ell^k]$.

Much better:

- Start with **any** walk of length $k \ge h + 1$;
- First step is horizontal, use it to move to the next curve;
- Compute again a walk of length k (actually only requires computing one step);

Details I glossed over

Computing in towers of field extensions

- Torsion points are not defined in \mathbb{F}_q , in general.
- We work in ℓ-adic extensions of F_q using constructions from [LDF, Doliskani, Schost '13], [Doliskani, Schost '15] where in particular we have a fast computation of the Frobenius.

Finding an Elkies prime ℓ

- The complexity depends polynomially on the auxiliary prime ℓ .
- Ideally we would like to work with $\ell = 2$.
- In practice half of all ℓ are expected to be Elkies primes.
- In theory we can only prove ℓ ≤ O(log(q)) for almost all q and curves E, E' (see [Shparlinski, Sutherland '14]).

Experiments

The algorithm has been implemented on SageMath v7.1 for the case of $\ell = 2$, the code is available on GitHub:

https://github.com/Hugounenq-Cyril/Two_curves_on_a_volcano

Conclusion

Contribution

- New tools for navigating isogeny volcanoes.
- A faster variant of Couveignes' algorithm.

Future work

- Compare implementation to other algorithms (esp. Lercier-Sirvent).
- Give an analogous algorithm for Atkin primes.
- Analyze our techniques to navigate the volcano in other settings: point counting, computation of endomorphism rings, Hilbert class polynomials, modular polynomials.

VOLCANO TYPES

