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Elliptic curves
Let E be an elliptic curve. . .

forget it!

P
Q

R

P + Q
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Elliptic curves

C/Λ

ω1

ω2

ab

a + b

a + b

Let ω1, ω2 ∈ C
be linearly
independent
complex
numbers. Set

Λ = ω1Z⊕ ω2Z

C/Λ is an
elliptic curve.
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Addition law
induced by
addition on C.

Luca De Feo Explicit isogenies in quadratic time in any characteristic 3/30



Elliptic curves

C/Λ

ω1

ω2

ab

a + b

a + b

Addition law
induced by
addition on C.

Luca De Feo Explicit isogenies in quadratic time in any characteristic 3/30



Elliptic curves

C/Λ

ω1

ω2

ab

a + b

a + b

Addition law
induced by
addition on C.

Luca De Feo Explicit isogenies in quadratic time in any characteristic 3/30



Elliptic curves

C/Λ

ω1

ω2

ab

a + b

a + b

Addition law
induced by
addition on C.

Luca De Feo Explicit isogenies in quadratic time in any characteristic 3/30



Isomorphism classes

a

Two lattices are
homotetic if there
exist α ∈ C such
that

αΛ1 = Λ2

The j-invariant j(Λ)
classifies elliptic
curves up to
homothety
(isomorphism).
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Multiplication

a

[3]a

[3]a
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Multiplication + homothety

[3]

a

[3]a
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Torsion subgroups

a

b

The `-torsion
subgroup is made
up by the points(

iω1
`
,

jω2
`

)
It is a group of rank
two

E [`] = 〈a, b〉
' (Z/`Z)2
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Isogenies

a

b

p

p

p

Let a ∈ C/Λ1 be an
`-torsion point, and
let

Λ2 = aZ⊕ Λ1

Then Λ1 ⊂ Λ2 and
we define a degree `
cover

φ : C/Λ1 → C/Λ2

φ is a morphism of
complex Lie groups
and is called an
isogeny.
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Isogenies

a

b

p

p

p

Taking a point b
not in the kernel of
φ, we obtain a new
degree ` cover

φ̂ : C/Λ2 → C/Λ3

The composition
φ̂ ◦ φ has degree `2
and is homothetic
to the multiplication
by ` map.
φ̂ is called the dual
isogeny of φ.
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Isogenies over arbitrary fields
Isogenies are just the right notion of morphism for elliptic curves

Surjective group morphisms.
Algebraic maps (i.e., defined by polynomials).

0→ H → E φ→ E ′ → 0

The kernel H determines the image curve E ′ up to isomorphism

E/H def= E ′.

Isogeny degree
Neither of these definitions is quite correct, but they nearly are:

The degree of φ is the cardinality of ker φ.
(Bisson) the degree of φ is the time needed to compute it.
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The computational point of view

In practice: an isogeny φ is just a rational fraction (or maybe two)

N(x)
D(x) = x r + · · ·+ n1x + n0

x r−1 + · · ·+ d1x + d0
∈ k(x), with ` = deg φ,

and D(x) vanishes on ker φ.

Vélu’s formulas
Input: The kernel polynomial D(x).

Output: The curve E/H and the rational fraction N/D.
Complexity: Õ(r).

Sidenote: we are only interested in rational isogenies, i.e. such that N/D has
coefficients in the base field (i.e. φ is Galois invariant).
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Motivation

Explicit isogeny problem
Let Fq be a finite field of characteristic p. Given an integer r and two r -isogenous
elliptic curves E , E ′ defined over Fq, compute an r -isogeny φ : E → E ′.

Special instances of this problem appear in various applications:
Schoof-Elkies-Atkin point counting algorithm,
ECC cryptanalysis: [Gaudry, Hess, Smart ’02],
Hash functions: [Charles, Goren, Lauter ’07],
Trapdoors: [Teske ’06],
Post quantum cryptography: [Rotostev, Stolbunov ’06],
[De Feo, Jao, Plût ’11].

Disclaimer: however, the general version we are going to solve here does not
improve the theoretical complexity1 of any of these!

1

It possibly gives a minor practical speed-up for SEA in medium characteristic, though :)
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Previous work

Let p be the characteristic of Fq.
[Elkies ’92/’98], [Bostan, Morain, Salvy, Schost ’08] use Õ(r) operations in
Fq, work only for r < 2p. Specific to the SEA case.
[Couveignes ’94] any characteristic, Õ(r3pO(1)) operations.
[Lercier ’97] only p = 2.
[Couveignes ’96], [LDF ’10] any characteristic, Õ(r2pO(1)) operations.
[Lercier, Sirvent ’08], [Lairez, Vaccon ’16] works for every p using Õ(r2)
operations in Fq. Specific to the SEA case.

Our goal: modify Couveignes’ algorithm to obtain an algorithm with complexity
Õ(r2) but with no exponential dependency in log(p).
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Torsion points of elliptic curves
Torsion points
Let E be an elliptic curve defined over a finite field Fq, and let m > 0

E [m] = {P ∈ E (F̄q),mP = 0E}

For ordinary elliptic curves

E [`k ] ' Z/`kZ× Z/`kZ with ` 6= p
E [pk ] ' Z/pkZ

Couveignes’ algorithm (compute an r -isogeny φ : E → E ′)
Compute φ by interpolation over E [pk ]:

Compute generators P,P ′ of E [pk ],E ′[pk ];
Interpolate φ, assuming it maps uP 7→ uP ′ for all u ∈ Z/pkZ;
Test whether φ is an isogeny.
In case it is not, replace P ′ with a multiple aP ′ and start again.
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Couveignes algorithm (1996)

Input: E ,E ′ two r -isogenous curves on Fpn ,
Output: φ : E → E ′ of degree r .

1 Select the least k such that pk > 4r ;
2 Compute generators P of E [pk ] and P ′ of E ′[pk ];
3 Compute T =

∏
(X − x(uP)) with 1 ≤ u ≤ pk−1

2 ;
4 For each a ∈

(
Z/pkZ

)×: O(r)
1 Compute the interpolation polynomial L : x(uP) 7→ x(a (uP ′)); Õ(rpO(1))
2 Use a rational reconstruction algorithm to compute a rational fraction

F = L mod T of degrees (r , r − 1); Õ(r)
3 If F defines an isogeny of degree r , return it and stop.

Our brilliant idea!
Replace E [pk ] by E [`k] for a small prime ` 6= p.
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An `-adic Couveignes’ algorithm?

Our goal is to work with E [`k] '
(
Z/`kZ

)2 instead of E [pk ] to remove the
polynomial dependency in p.

E [pk ] = 〈P〉 '
(
Z/pkZ

)
with pk ≈ r

E [`k ] = 〈P,Q〉 '
(
Z/`kZ

)
×
(
Z/`kZ

)
with `2k ≈ r

p-adic
Let P ∈ E and P ′ ∈ E ′

P 7→ aP ′ a ∈ (Z/pkZ)∗

⇒ O(r) possibilities.

`-adic
Let P,Q ∈ E and P ′,Q′ ∈ E ′(

P
Q

)
7→
(

a b
c d

)(
P ′
Q′
)

with
( a b

c d
)
∈ GL2(Z/`kZ) invertible.

⇒ O(r2) possibilities.

Not so brilliant, after all?
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Frobenius vs isogenies

Definition (Frobenius Endomorphism)
E an ordinary elliptic curve defined over Fq. The function

π : (x , y) 7→ (xq, yq)

is called Frobenius endomorphism. It satisfies a quadratic equation

π2 − tππ + q = 0.

We are only working with rational isogenies φ : E → E ′, i.e.

πE ′ ◦ φ = φ ◦ πE .
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Subgroup of size ` ⇔ `-isogeny

Subgroup of size ` stable by π ⇔ Rational `-isogeny

Assume that π splits modulo `: i.e. its minimal polynomial factors as

(π − λ)(π − µ) with λ 6= µ mod `

Two eigenspaces in E [`]
ker(π − λ), ker(π − µ)

⇒ Two rational `-isogenies
of direction λ, µ

Isogeny graph

E•

•
•

•

•

•
•

•

λ

µ
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Fact
Let φ be an r -isogeny with ` - r , then φ preserves the kernels of the `-isogenies of
direction λ, µ.

To interpolate φ over E [`k ], we want to compute two cyclic `k -subgroups of
direction λ, µ.

•E

•
•

•

•

•
•

•

λ

µ

λ

µ

λ

µ

φ

•E ′

•
•

•

•

•
•

•

λ

µ

λ

µ

λ

µ

φ

We call E [`k ]λ ⊕ E [`k ]µ a horizontal decomposition;
SEA literature calls this an isogeny cycle [Couveignes, Morain ’94].
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Towards an `-adic Couveignes’ algorithm (π splits modulo `)
Input: E ,E ′ two r -isogenous curves on Fq,

Output: φ : E → E ′ of degree r .

Fact: φ maps E [`k ]λ→E ′[`k ]λ and E [`k ]µ→E ′[`k ]µ.

1 Select the least k such that `2k > 4r .

2 Compute 〈P,Q〉 = E [`k ]λ ⊕ E [`k ]µ
and 〈P ′,Q′〉 = E ′[`k ]λ ⊕ E ′[`k ]µ

3 For each invertible diagonal matrix ( a 0
0 b ) in (Z/`kZ)2×2:

1 Compute the interpolation polynomial L sending
P 7→ aP ′ and Q 7→ bQ′;

2 Use a rational reconstruction algorithm to compute a rational fraction F of
degrees (r , r − 1);

3 If F defines an isogeny of degree r , return it and stop.
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3 For each invertible diagonal matrix ( a 0
0 b ) in (Z/`kZ)2×2: O(r)

1 Compute the interpolation polynomial L sending
P 7→ aP ′ and Q 7→ bQ′; Õ(r`O(1))

2 Use a rational reconstruction algorithm to compute a rational fraction F of
degrees (r , r − 1); Õ(r)
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I’m done. Thanks.

Questions?
No?

Ok, wait, I’m not done yet!
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Towards the general case

Denote by O (resp. O′) the endomorphism ring of E (resp. E ′)

Z + `2O•

Z + `O•

O•

`

`

• •

•

• •

•

•

• •

•

•

• •

•

•

Lemma (Kohel 1996)
E and E ′ two elliptic
curves defined over Fq,
ψ : E → E ′ an `-isogeny.
Then we say that ψ is

1 descending if
` = [O : O′]

2 ascending if
` = [O′ : O],

3 horizontal if O = O′.
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A guide to volcano types

•

• • •

Inert prime `

• •

• •

Ramified prime `

•

• •

• •
•

Split prime `

•

•

•

•

•

•

Figure: The three shapes of volcanoes of 2-isogenies

In the rest of this talk we consider only volcanoes with cyclic crater (Elkies case).
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The Elkies case

Elkies prime
We say that ` is an Elkies prime if the characteristic polynomial of π factors over
Z` as

π2 − tππ + q = (π − λ)(π − µ), with λ 6= µ,

where h = v`(λ− µ) can be > 1.

Note: h = v`(λ− µ) is the height of the `-volcano.

Problem: as long as k ≤ h, the two eigenvalues are undistinguishable:

π(P) = λP = µP for any P ∈ E [`h].

From now on, we assume2 that k > h + 1.

2This has no impact on the complexity as the isogeny degree grows, indeed k ≈ log(r).
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Proposition (LDF, Hugounenq, Plût, Schost)

In the Elkies case the action of the Frobenius endomorphism π on E [`h+1] is
conjugate, over Z`, to a unique matrix(

λ a
0 µ

)
,

with a ∈ {1, `, . . . , `h−1, 0}, and a = 0 iff E lies on the crater.

(
λ 1
0 µ

)
(
λ `
0 µ

)
(
λ 0
0 µ

)
• •

•
• •

•

• •

•

•

• •

•

•

• •

•

•

h
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Suppose that E lies on the crater (we can reduce to this case easily).

Volcano with height h = 0

λ

µ

λ

µ

λ

µ

E•

•
•

•

•

•
•

•

ker(π − µ | E [`k ]) is cyclic of
size `k ;
Interpolation maps a cyclic
group to a cyclic group;
O(`k) choices. Happiness!

Volcano with height h = 2

E

Problem:
ker(π − µ | E [`k ]) '
(Z/`k)×(Z/`h);
It contains `h cyclic subgroups
of order `k ;
Each cyclic subgroup is
associated to an isogeny that
starts horizontal;
O(`k+h) choices. Sadness.
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Walking on the crater

Trivial fix: compute a basis of E [`k+h],
only to obtain only a horizontal
decomposition of E [`k ].

Much better:
1 Start with any walk of length

k ≥ h + 1;
2 First step is horizontal, use it to

move to the next curve;
3 Compute again a walk of length k

(actually only requires computing
one step);

4 etc.

• •
•

E2

µ
E3

•

• •

E1

•

• •

EE

•

• •

•

• •

E2

E3

E
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Details I glossed over

Computing in towers of field extensions
Torsion points are not defined in Fq, in general.
We work in `-adic extensions of Fq using constructions from [LDF, Doliskani,
Schost ’13], [Doliskani, Schost ’15] where in particular we have a fast
computation of the Frobenius.

Finding an Elkies prime `
The complexity depends polynomially on the auxiliary prime `.
Ideally we would like to work with ` = 2.
In practice half of all ` are expected to be Elkies primes.
In theory we can only prove ` ≤ O(log(q)) for almost all q and curves E ,E ′
(see [Shparlinski, Sutherland ’14]).
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Experiments
The algorithm has been implemented on SageMath v7.1 for the case of ` = 2, the
code is available on GitHub:
https://github.com/Hugounenq-Cyril/Two_curves_on_a_volcano
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Conclusion

Contribution
New tools for navigating isogeny volcanoes.
A faster variant of Couveignes’ algorithm.

Future work
Compare implementation to other algorithms (esp. Lercier-Sirvent).
Give an analogous algorithm for Atkin primes.
Analyze our techniques to navigate the volcano in other settings: point
counting, computation of endomorphism rings, Hilbert class polynomials,
modular polynomials.
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Inert prime `

Ramified prime `

Split prime `

Modified from xkcd.com/1714

http://xkcd.com/1714/
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