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Elliptic curves
LetE : y2 = x 3 + ax + b be an elliptic curve. . .

forget it!
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Elliptic curves

C=�

!1

!2

ab

a + b

a + b

Let !1; !2 2 C
be linearly
independent
complex
numbers. Set

� = !1Z� !2Z

C=� is an
elliptic curve.
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Multiplication

a

[3]a

[3]a
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Torsion subgroups

a

b

The `-torsion
subgroup is made
up by the points�

i!1

`
;
j!2

`

�

It is a group of
rank two

E [`] = ha ; bi
' (Z=`Z)2
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Isogenies

a

b

p

p

p

Let a 2 C=�1 be
an `-torsion point,
and let

�2 = aZ� �1

Then�1 � �2 and
we define a degree
` cover

� : C=�1 ! C=�2

� is a morphism of
complex Lie
groups and is
called an isogeny.
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Isogenies

a

b

p

p

p

Taking a point b
not in the kernel of
�, we obtain a new
degree ` cover

�̂ : C=�2 ! C=�3

The composition
�̂ � � has degree `2
and is homothetic
to the
multiplication by `
map.
�̂ is called the dual
isogeny of �.
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Isogenies over arbitrary fields
Isogenies are just the right notion of morphism for elliptic curves

Surjective groupmorphisms.
Algebraic maps (i.e., defined by polynomials).

(Separable) isogenies, finite subgroups:

0 ! H ! E
�! E 0 ! 0

The kernelH determines the image curveE 0 up to isomorphism

E=H def
= E 0:

Isogeny degree
Neither of these definitions is quite correct, but they nearly are:

The degree of � is the cardinality of ker�.
(Bisson) the degree of � is the time needed to compute it.
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Easy and hard problems
In practice: an isogeny � is just a rational fraction (or maybe two)

N (x )
D(x )

=
xn + � � �+ n1x + n0

xn�1 + � � �+ d1x + d0
2 k(x ); with n = deg �;

andD(x ) vanishes on ker�.

The explicit isogeny problem
Input: A description of the isogeny (e.g, its kernel).

Output: The curveE=H and the rational fractionN=D .
Instances Input = kernel generator I Velu’s formulas; ~O(n)

Input =E andE=H
I Elkies’ algorithma (and variants); ~O(n)
I Couveignes’ algorithmb (and variants). ~O(n2)

Lower bound: 
(n).
aElkies 1998.
bCouveignes 1996.
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Easy and hard problems

The isogeny evaluation problem
Input: A description of the isogeny �, a pointP 2 E(k).

Output: The curveE=H and �(P).
Examples Input = rational fraction; O(n)

Input = composition of low degree isogenies; ~O(logn)
Input = kernel generator; O(??)
Input = �(a�1P); O(1)

Exponential separation.. .

Crypto happens!
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Isogeny graphs
We look at the graph of elliptic curves with
isogenies up to isomorphism. We say two
isogenies �; �0 are isomorphic if:

E E 0

E 0

�

�0

e

Example: Finite field, ordinary case, graph of isogenies of degree 3.
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Structure of the graph1

Theorem (Serre-Tate)
Two curves are isogenous over a finite field k if and only if they have the same
number of points on k .

The graph of isogenies of prime degree ` 6= p
Ordinary case (isogeny volcanoes)

Nodes can have degree 0; 1; 2 or `+ 1.
I For� 50% of the primes `, graphs are just isolated points;
I For other� 50%, graphs are 2-regular;
I other cases only happen for finitely many `’s.

Supersingular case
The graph is `+ 1-regular.
There is a unique (finite) connected component made of all
supersingular curves with the same number of points.

1Deuring 1941; Kohel 1996; Fouquet and Morain 2002.
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Expander graphs from isogenies
Expander graphs
An infinite family of connected k -regular graphs on n vertices is an
expander family if there exists an � > 0 such that all non-trivial eigenvalues
satisfy j�j � (1� �)k for n large enough.

Expander graphs have short diameter (O(logn));
Randomwalks mix rapidly (a�erO(logn) steps, the induced
distribution on the vertices is close to uniform).

Supersingular Let ` be fixed, the graphs of all supersingular curves with
`-isogenies are expanders;2

Ordinary* LetO � Q[
p�D ] be an order in a quadratic imaginary field.

The graphs of all curves over Fq with complex multiplication
byO, with isogenies of prime degree bounded by (log q)2+� ,
are expanders.3 *(may contain traces of GRH)

2Pizer 1990, 1998.
3Jao, Miller, and Venkatesan 2009.
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Isogeny walks and cryptanalysis5

(alternative) fact: Having a weak DLP is not (always) isogeny invariant.

E E 0weak curve strong curve

E 00

Fourth root attacks
Start two randomwalks from the two curves and wait for a collision.
Over Fq , the average size of an isogeny class is h� � p

q .

A collision is expected a�erO(
p

h�) = O(q
1
4 ) steps.

Note: Can be used to build trapdoor systems4.

4Teske 2006.
5Steven D. Galbraith 1999; Steven D. Galbraith, Hess, and Smart 2002; Bisson and

Sutherland 2011.
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Randomwalks and hash functions
Any expander graph gives rise to a hash function.

v
0

1
1

0
0

1
1

0
0

1
1

0

v 0 H (010101) = v 0

Fix a starting vertex v ;
The value to be hashed determines a random path to v 0;
v 0 is the hash.

Provably secure hash functions
Use the expander graph of supersingular 2-isogenies;a

Collision resistance = hardness of finding cycles in the graph;
Preimage resistance = hardness of finding a path from v to v 0.

aCharles, K. E. Lauter, and Goren 2009.
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Randomwalks and key exchange

Let’s try something harder...

1
0

0
1

1
0

0
1

1
0

1
0

0
1 0

1
1

0

0
1

1
0

0
1 0

1
1

0

0
1

1
0

0
1

1
0

0
1

1
0

Public v0

Alice’s public vA Bob’s public vB

Shared secret
...is this even possible?
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Expander graphs from groups

g2

g4
g8

g3

g6

g12

g11

g9

g5
g10

g7

g1

Let G = hgi be a cyclic
group of order p.

Let
S � (Z=pZ)� s.t.
S�1 � S .
The Schreier graph of
(S ;G n f1g) is (usually)
an expander.

x 7! x 2

x 7! x 3

x 7! x 5
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Key exchange from Schreier graphs

g

gA

gB

gBA

= gAB

Public parameters:
A groupG = hgi of order p;
A subset S � (Z=pZ)�.

1 Alice takes a secret random
walk sA : g ! gA of length
O(log p);

2 Bob does the same;
3 They publish gA and gB ;
4 Alice repeats her secret walk

sA starting from gB .
5 Bob repeats his secret walk

sB starting from gA.
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Key exchange from Schreier graphs

g

gA

gB

gBA = gAB

Why does this work?

gA = g2�3�2�5;

gB = g32�5�2;

gBA = gAB = g23�33�52
;

and gA; gB ; gAB are uniformly
distributed inG . . .

. . . Indeed, this is just a twisted
presentation of the classical
Di�ie-Hellman protocol!
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Group action on isogeny graphs

`1-isogenies

`2-isogenies

There is a group action of the
ideal class groupCl(O) on the
set of ordinary curves with
complex multiplication byO.
Its Schreier graph is an isogeny
graph (and an expander if we
take enough generators)
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Key exchange in graphs of ordinary isogenies6
Parameters:

E=Fp ordinary elliptic curve with Frobenius endomorphism �,

primes `1,`2,. . .such that
�

D�
`i

�
= 1.

A direction for each `i (i.e. an eigenvalue of �).
Secret data: Randomwalks a; b 2 Cl(O) in the isogeny graph.

E

a � E b � E

ab � E = ba � E

`
a1
1 `

a2
2 � � � = N (a) N (b) = `

b1
1 `

b2
2 � � �

6Couveignes 2006; Rostovtsev and Stolbunov 2006.
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R&S key exchange

Key generation: compose small degree isogenies
polynomial in the lenght of the randomwalk.

Attack: find an isogeny between two curves
polynomial in the degree, exponential in the length.

Quantum7: Shor + isogeny evaluation
subexponential in the length of the walk.

7Childs, Jao, and Soukharev 2010.
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Key exchange with supersingular curves
Good news: there is no action of a commutative class group.
Bad news: there is no action of a commutative class group.

However: an algebraic structure is still acting on supersingular graphs:
ideals of maximal orders of a quaternion algebra.

E E 0

E 00 E 000

a

ab

b ba

The action is not commutative, we cannot use the same technique;
We let instead Alice and Bob walk in two di�erent isogeny graphs on
the same vertex set.
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Key exchange with supersingular curves
In practice, we fix:

Small primes `A, `B ;
A large prime p such that p + 1 = `eA

A `
eB
B ;

A supersingular curveE over Fp2 , such that

E ' (Z=(p + 1)Z)2 = (Z=`eA
A Z)

2 � (Z=`eB
B Z)

2;

We use isogenies of degrees `eA
A and `eB

B with cyclic rational kernels;
The diagram below can be constructed in time poly(eA + eB ).

ker� = hPi � E [`eA
A ]

ker = hQi � E [`eB
B ]

ker�0 = h (P)i
ker 0 = h�(Q)i

E E=hPi

E=hQi E=hP ;Qi

�

�0

  0
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Supersingular Isogeny Di�ie-Hellman8

Parameters:
Prime p such that
p + 1 = `aA`

b
B ;

Supersingular curve
E ' (Z=(p + 1)Z)2;

E [`aA] = hPA;QAi;
E [`bB ] = hPB ;QB i.

Secret data:
RA = mAPA + nAQA,

RB = mBPB + nBQB ,

E

E=hRAi

�(PB )

�(QB )

E=hRBi

 (PA)

 (QA)

E=hRAi
�(RB )

' E=hRA;RBi ' E=hRB i
 (RA)

�  

 0 �0

�(RB )  (RA)

8Jao and De Feo 2011; De Feo, Jao, and Plût 2014.
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Performance
For e�iciency choose p such that p + 1 = 2a3b .
For classical n -bit security, choose 2a � 3b � 22n , hence p � 24n .
For quantum n -bit security, choose 2a � 3b � 23n , hence p � 26n .

Practical optimizations:
Use new quasi-linear algorithm for isogeny evaluationa.
Optimize arithmetic for Fp .bc

�1 is a quadratic non-residue: Fp2 ' Fp [X ]=(X 2 + 1).
E (or its twist) has a 4-torsion point: use Montgomery form.
Avoid inversions by using projective curve equations.b

Fastest implementationb: 100Mcycles (Intel Haswell) @128bits quantum
security level, 4512bits public key size.

aDe Feo, Jao, and Plût 2014.
bCostello, Longa, and Naehrig 2016.
cKarmakar, Roy, Vercauteren, and Verbauwhede 2016.
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Comparison

Speed Communication
RSA 3072 4ms 0.3KiB
ECDH nistp256 0.7ms 0.03KiB
Code-based 0.5ms 360KiB
NTRU 0.3-1.2ms 1KiB
Ring-LWE 0.2-1.5ms 2-4KiB
LWE 1.4ms 11KiB
SIDH 35-400ms 0.5KiB

Source: D. Stebila, Preparing for post-quantum cryptography in TLS
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Generic attacks
Problem: GivenE ;E 0, isogenous of degree `n , find � : E ! E 0.

E

E=hP0i

Ei=hPii

E=hP`n=2i

...

...

E 0

`n=2

`n=2

With high probability � is the unique collision (or claw).
A quantum claw finding9 algorithm solves the problem inO(`n=3).

9Tani 2009.
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Other attacks

Ephemeral key recovery (total break)
GivenE0 and a public curveE0=hRi, find the kernel of the secret isogeny:
Subexponential Lp(1=2;

p
3=2)when both curves are defined over Fp .a

Polynomial isomorphic problem on quaternion algebras.b

Equivalent to computing the endomorphism rings of bothE0 and
E0=hRAi.c

aBiasse, Jao, and Sankar 2014.
bKohel, K. Lauter, Petit, and Tignol 2014.
cSteven D Galbraith, Petit, Shani, and Ti 2016.

Open problem: exploit the additional information transmitted by the
protocol to improve attacks (classical or quantum).
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Other attacks

Other security models
Active attack against long term keys, learns the full key with (close to)

optimal number of oracle queries. Countermeasures are
relatively expensive.a

Side channel Constant-time implementation available.b

Attack on partially leaked keys.ac

aSteven D Galbraith, Petit, Shani, and Ti 2016.
bCostello, Longa, and Naehrig 2016.
cTwomore papers at PQCrypto 2017

Open problem: Create a protocol secure against active adversaries.
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Bonus: a ZK proof of knowledge10
Secret: knowledge of the kernel of a degree `eA

A isogeny fromE toE=hSi.

E E=hSi

E=hPi E=hP ;Si

�

?

? ?

1 Choose a random pointP 2 E [`eB
B ], compute the diagram;

2 Publish the curvesE=hPi andE=hP ;Si;
3 The verifier asks one of the two questions:

I Reveal the degree `eB
B isogenies;

I Reveal the bottom isogeny.

10De Feo, Jao, and Plût 2014.
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Other protocols based on SIDH

Non-interactive protocols
El-Gamal encryption.

Interactive protocols
Signatures (using Fiat-Shamir)a,
Undeniable signaturesb,
Strong designated verifier signaturesc,
Authenticated encryptiond.

aSteven D Galbraith, Petit, Shani, and Ti 2016.
bJao and Soukharev 2014.
cSun, Tian, and Wang 2012.
dSoukharev, Jao, and Seshadri 2016.

Open problem: Classical signatures, . . .
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Thank you

http://defeo.lu/

@luca_defeo
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