
Photo courtesy of Elisa Lorenzo-García

Isogeny graphs in cryptography

Luca De Feo

Université Paris Saclay, UVSQ & Inria

March 19–23, 2018, Post-Scryptum Spring School, Les 7 Laux

Slides online at http://defeo.lu/docet/

http://defeo.lu/docet/


Overview

1 Foundations
Elliptic curves
Isogenies
Complex multiplication

2 Isogeny-based cryptography
Isogeny walks
Key exchange from ordinary graphs
Key exchange from supersingular graphs
The SIKE submission

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Mar 19–23, 2018 — Post-Scryptum 2 / 75



Projective space
Definition (Projective space)
Let �k an algebraically closed field, the projective space Pn(�k) is the set of
non-null (n + 1)-tuples (x0; : : : ; xn) 2 �kn modulo the equivalence relation

(x0; : : : ; xn) � (�x0; : : : ; �xn) with � 2 �k n f0g:

A class is denoted by (x0 : � � � : xn).
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Weierstrass equations

Let k be a field of
characteristic 6= 2; 3.
An elliptic curve defined over
k is the locus in P2(�k) of an
equation

Y 2Z = X 3 + aXZ 2 + bZ 3;

where a ; b 2 k and
4a3 + 27b2 6= 0.

O = (0 : 1 : 0) is the
point at infinity;
y2 = x 3 + ax + b is the
a�ine equation.
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The group law

Bezout’s theorem
Every line cutsE in exactly
three points (counted with
multiplicity).

Define a group law such that
any three colinear points add
up to zero.

The law is algebraic
(it has formulas);
The law is commutative;
O is the group identity;
Opposite points have the
same x -value.

P

Q

R

P +Q
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Group structure

Torsion structure
LetE be defined over an algebraically closed field �k of characteristic p.

E [m ] ' Z=mZ� Z=mZ if p - m ,

Z=peZ ordinary case,
E [pe ] '

(
fOg supersingular case.

Free part
LetE be defined over a number field k , the group of k -rational pointsE(k)
is finitely generated.
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Maps: isomorphisms

Isomorphisms
The only invertible algebraic maps between elliptic curves are of the form

(x ; y) 7! (u2x ;u3y)

for some u 2 �k .
They are group isomorphisms.

j -Invariant
LetE : y2 = x 3 + ax + b, its j -invariant is

j (E) = 1728
4a3

4a3 + 27b2 :

Two elliptic curvesE ;E 0 are isomorphic if and only if j (E) = j (E 0).
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Maps: isogenies
Theorem
Let � : E ! E 0 be amap between elliptic curves. These conditions are
equivalent:

� is a surjective groupmorphism,
� is a groupmorphismwith finite kernel,
� is a non-constant algebraic map of projective varieties sending the
point at infinity ofE onto the point at infinity ofE 0.

If they hold � is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m
On any curve, an isogeny fromE to itself (i.e., an endomorphism):

[m ] : E ! E ;
P 7! [m ]P :
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Isogenies: an example over F11

E : y2 = x 3 + x E 0 : y2 = x 3 � 4x

�(x ; y) =

 
x 2 + 1

x
; y

x 2 � 1
x 2

!

Kernel generator in red.
This is a degree 2map.
Analogous to x 7! x 2 in F�q .
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Curves over finite fields

Frobenius endomorphism
LetE be defined over Fq . The Frobenius endomorphism ofE is the map

� : (X : Y : Z ) 7! (X q : Y q : Z q):

Hasse’s theorem
LetE be defined over Fq , then

j#E(k)� q � 1j � 2
p

q :

Serre-Tate theorem
Two elliptic curvesE ;E 0 defined over a finite field k are isogenous over k if
and only if#E(k) = #E 0(k).
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Complex tori

C=�

!1

!2

ab

a + b

a + b

Let !1; !2 2 C
be linearly
independent
complex
numbers. Set

� = !1Z� !2Z

C=� is a
complex torus.
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Complex tori
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!1

!2

ab
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Addition law
induced by
addition onC.
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Homotheties

a

Two lattices are
homothetic if
there exist � 2 C
such that

��1 = �2
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The j -invariant
Wewant to classify complex lattices/tori up to homothety.

Eisenstein series
Let� be a complex lattice. For any integer k > 0 define

G2k (�) =
X

!2�nf0g

!�2k :

Also set
g2(�) = 60G4(�); g3(�) = 140G6(�):

Modular j -invariant
Let� be a complex lattice, the modular j -invariant is

j (�) = 1728
g2(�)

3

g2(�)3 � 27g3(�)2
:

Two lattices�;�0 are homothetic if and only if j (�) = j (�0).
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Elliptic curves overC

Weierstrass } function
Let� be a complex lattice, the Weierstrass } function associated to� is the
series

}(z ; �) =
1
z 2 +

X
!2�nf0g

�
1

(z � !)2
� 1
!2

�
:

Fix a lattice�, then } and its derivative }0 are elliptic functions:

}(z + !) = }(z ); }0(z + !) = }0(z )

for all ! 2 �.
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Uniformization theorem
Let� be a complex lattice. The curve

E : y2 = 4x 3�g2(�)x�g3(�)

is an elliptic curve overC. The map

C=�! E(C);

0 7! (0 : 1 : 0);
z 7! (}(z ) : }0(z ) : 1)

is an isomorphism of Riemann surfaces and a groupmorphism.
Conversely, for any elliptic curve

E : y2 = x 3 + ax + b

there is a unique complex lattice� such that

g2(�) = �4a ; g3(�) = �4b:

Moreover j (�) = j (E).
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Multiplication

a

[3]a

[3]a
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Torsion subgroups

a

b

The `-torsion
subgroup is made
up by the points�

i!1

`
;
j!2

`

�

It is a group of
rank two

E [`] = ha ; bi
' (Z=`Z)2
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Isogenies

a

b

p

p

p

Let a 2 C=�1 be
an `-torsion point,
and let

�2 = aZ� �1

Then�1 � �2 and
we define a degree
` cover

� : C=�1 ! C=�2

� is a morphism of
complex Lie
groups and is
called an isogeny.
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Isogenies

a

b

p

p

p

Taking a point b
not in the kernel of
�, we obtain a new
degree ` cover

�̂ : C=�2 ! C=�3

The composition
�̂ � � has degree `2
and is homothetic
to the
multiplication by `
map.
�̂ is called the dual
isogeny of �.
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Isogenies: back to algebra
Let � : E ! E 0 be an isogeny defined over a field k of characteristic p.

k(E) is the field of all rational functions fromE to k ;
��k(E 0) is the subfield of k(E) defined as

��k(E 0) = ff � � j f 2 k(E 0)g:

Degree, separability
1 The degree of � is deg � = [k(E) : ��k(E 0)]. It is always finite.
2 � is said to be separable, inseparable, or purely inseparable if the
extension of function fields is.

3 If � is separable, then deg � = #ker�.
4 If � is purely inseparable, then ker� = fOg and deg � is a power of p.
5 Any isogeny can be decomposed as a product of a separable and a
purely inseparable isogeny.
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Isogenies: separable vs inseparable

Purely inseparable isogenies
Examples:

The Frobenius endomorphism is purely inseparable of degree q .
All purely inseparable maps in characteristic p are of the form
(X : Y : Z ) 7! (X pe

: Y pe
: Z pe

).

Separable isogenies
LetE be an elliptic curve, and letG be a finite subgroup ofE . There are a
unique elliptic curveE 0 and a unique separable isogeny �, such that
ker� = G and � : E ! E 0.
The curveE 0 is called the quotient ofE byG and is denoted byE=G .
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The dual isogeny

Let � : E ! E 0 be an isogeny of degreem . There is a unique isogeny
�̂ : E 0 ! E such that

�̂ � � = [m ]E ; � � �̂ = [m ]E 0 :

�̂ is called the dual isogeny of �; it has the following properties:

1 �̂ is defined over k if and only if � is;
2 [ � � = �̂ �  ̂ for any isogeny : E 0 ! E 00;
3 \ + � =  ̂ + �̂ for any isogeny : E ! E 0;
4 deg � = deg �̂;
5 ^̂� = �.
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Algebras, orders
A quadratic imaginary number field is an extension ofQ of the form
Q [
p�D ] for some non-squareD > 0.

A quaternion algebra is an algebra of the formQ+ �Q+ �Q+ ��Q,
where the generators satisfy the relations

�2; �2 2 Q; �2 < 0; �2 < 0; �� = ���:

Orders
LetK be a finitely generatedQ-algebra. An orderO � K is a subring ofK
that is a finitely generatedZ-module of maximal dimension. An order that
is not contained in any other order ofK is called a maximal order.

Examples:
Z is the only order contained inQ,
Z[i ] is the only maximal order ofQ[i ],
Z[
p

5] is a non-maximal order ofQ[
p

5],
The ring of integers of a number field is its only maximal order,
In general, maximal orders in quaternion algebras are not unique.
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The endomorphism ring

The endomorphism ringEnd(E) of an elliptic curveE is the ring of all
isogeniesE ! E (plus the null map) with addition and composition.

Theorem (Deuring)
LetE be an elliptic curve defined over a field k of characteristic p.
End(E) is isomorphic to one of the following:

Z, only if p = 0
E is ordinary.

An orderO in a quadratic imaginary field:
E is ordinary with complex multiplication byO.

Only if p > 0, a maximal order in a quaternion algebraa:
E is supersingular.

a(ramified at p and1)
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The finite field case

Theorem (Hasse)
LetE be defined over a finite field. Its Frobenius endomorphism � satisfies
a quadratic equation

�2 � t� + q = 0

inEnd(E) for some jt j � 2
p

q , called the trace of �. The trace t is coprime
to q if and only ifE is ordinary.

SupposeE is ordinary, thenD� = t2 � 4q < 0 is the discriminant ofZ[�].

K = Q[�] = Q[
p

D�] is the endomorphism algebra ofE .
Denote byOK its ring of integers, then

Z 6= Z[�] � End(E) � OK :

In the supersingular case, �may or may not be inZ, depending on q .
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Endomorphism rings of ordinary curves
Classifying quadratic orders
LetK be a quadratic number field, and letOK be its ring of integers.

Any orderO � K can be written asO = Z+ fOK for an integer f ,
called the conductor ofO, denoted by [Ok : O].
If dK is the discriminant ofK , the discriminant ofO is f 2dK .
IfO;O0 are two orders with discriminants d ; d 0, thenO � O0 i� d 0jd .

OK

Z+ 2OK Z+ 3OK Z+ 5OK

Z+ 6OK Z+ 10OK Z+ 15OK

Z[�] ' Z+ 30OK
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Isogeny volcanoes

Serre-Tate theorem reloaded
Two elliptic curvesE ;E 0 defined over a finite field are isogenous i� their
endomorphism algebrasEnd(E)
Q andEnd(E 0)
Q are isomorphic.

Isogeny graphs
Vertices are curves up to
isomorphism,
Edges are isogenies up to
isomorphism.

Isogeny volcanoes
Curves are ordinary,
Isogenies all have degree a
prime `.
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Volcanology I
LetE ;E 0 be curves with respective
endomorphism ringsO;O0.
Let � : E ! E 0 be an isogeny of
prime degree `, then:

ifO = O0, � is horizontal;
if [O0 : O] = `, � is ascending;
if [O : O0] = `, � is descending.

End(E)

OK

Z[�]

Isogeny volcano of degree ` = 3.
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Volcanology II

Height= v`([OK : Z[�]]).

How large is the crater?

End(E)

OK

Z[�]

Horizontal Ascending Descending
` - [OK : O]] ` - [O : Z[�]] 1 +

�
DK
`

�
` - [OK : O]] ` j [O : Z[�]] 1 +

�
DK
`

�
`�

�
DK
`

�
` j [OK : O]] ` j [O : Z[�]] 1 `
` j [OK : O]] ` - [O : Z[�]] 1
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The class group

LetEnd(E) = O � Q(p�D). Define

I(O), the group of invertible fractional ideals,
P(O), the group of principal ideals,

The class group
The class group ofO is

Cl(O) = I(O)=P(O):

It is a finite abelian group.
Its order h(O) is called the class number ofO.
It arises as the Galois group of an abelian extension ofQ(

p�D).
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Complex multiplication
The a-torsion

Let a � O be an (integral invertible) ideal ofO;
LetE [a] be the subgroup ofE annihilated by a:

E [a] = fP 2 E j �(P) = 0 for all � 2 ag;
Let � : E ! Ea, whereEa = E=E [a].

ThenEnd(Ea) = O (i.e., � is horizontal).

Theorem (Complex multiplication)
The action on the set of elliptic curves with complex multiplication byO
defined by a � j (E) = j (Ea) factors throughCl(O), is faithful and transitive.

Corollary

LetEnd(E) have discriminantD . Assume that
�

D
`

�
= 1, thenE is on a

crater of an `-volcano, and the crater contains h(End(E)) curves.
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Supersingular graphs

Every supersingular curve is defined
over Fp2 .
For every maximal order type of the
quaternion algebraQp;1 there are 1 or
2 curves over Fp2 having
endomorphism ring isomorphic to it.
There is a unique isogeny class of
supersingular curves over �Fp of size
� p=12.
Le� ideals act on the set of maximal
orders like isogenies.
The graph of `-isogenies is
(`+ 1)-regular.

Figure: 3-isogeny graph on F972 .
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Overview

1 Foundations
Elliptic curves
Isogenies
Complex multiplication

2 Isogeny-based cryptography
Isogeny walks
Key exchange from ordinary graphs
Key exchange from supersingular graphs
The SIKE submission
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Isogeny graphs
Vertices are curves up to isomorphism,
Edges are isogenies up to isomorphism.

Ordinary case
`-isogeny graphs form volcanoes.
The height of the volcano is given by the conductor ofZ[�].
All curves on the same level have the same endomorphism ring (have
complex multiplication by the same orderO).
Type of summit (one curve, two curves, crater) determined by

�
D
`

�
.

Size of the crater is h(O), andCl(O) acts on it.

Supersingular case
There are� p=12 supersingular j -invariants, all defined over Fp2 .
`-isogeny graphs are (`+ 1)-regular and connected.
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Graphs lexicon

Degree: Number of (outgoing/ingoing) edges.
k -regular: All vertices have degree k .
Connected: There is a path between any two vertices.
Distance: The length of the shortest path between two vertices.
Diamater: The longest distance between two vertices.

�1 � � � � � �n : The (ordered) eigenvalues of the adjacency matrix.
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Expander graphs

Proposition
IfG is a k -regular graph, its largest and smallest eigenvalues satisfy

k = �1 � �n � �k :

Expander families
An infinite family of connected k -regular graphs on n vertices is an
expander family if there exists an � > 0 such that all non-trivial eigenvalues
satisfy j�j � (1� �)k for n large enough.

Expander graphs have short diameter (O(logn));
Randomwalks mix rapidly (a�erO(logn) steps, the induced
distribution on the vertices is close to uniform).
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Expander graphs from isogenies
Theorem (Pizer 1990, 1998)
Let ` be fixed. The family of graphs of supersingular curves over Fp2 with
`-isogenies, as p !1, is an expander familya.

aEven better, it has the Ramanujan property.

In the ordinary case, for all primes ` - t2 � 4q :

50% of `-isogeny graphs are isolated points,
�

DK
`

�
= �1

50% of `-isogeny graphs are cycles.
�

DK
`

�
= +1

Theorem (Jao, Miller, and Venkatesan 2009)
LetO � Q[p�D ] be an order in a quadratic imaginary field. The graphs of
all curves over Fq with complex multiplication byO, with isogenies of
prime degree boundeda by (log q)2+� , are expanders.

aMay contain traces of GRH.
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Isogeny based cryptography is 20 years old!

1996 Couveignes suggests isogeny-based key-exchange at a
seminar in École Normale Supérieure;

1997 He submits “Hard Homogeneous Spaces” to Crypto;

1997 His paper gets rejected;
1997–2006 . . .Nothing happens for about 10 years.

Ok. Let’s move on to the next 10 years!
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Isogeny problems

Isogeny computation

poly(#G)

Given an elliptic curveE with Frobenius endomorphism �, and a subgroup
G � E such that �(G) = G , compute the rational fractions and the image
curve of the separable isogeny � : E ! E=G .

Explicit isogeny

poly(d)

Given two elliptic curvesE ;E 0 over a finite field, isogenous of known
degree d , find an isogeny � : E ! E 0 of degree d .

Isogeny walk

exp(log#k)

Given two elliptic curvesE ;E 0 over a finite field k , such that#E = #E 0,
find an isogeny � : E ! E 0 of smooth degree.
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Isogeny walks and cryptanalysis2 (circa 2000)

Fact: Having a weak DLP is not (always) isogeny invariant.

E E 0weak curve strong curve

E 00

Fourth root attacks
Start two randomwalks from the two curves and wait for a collision.
Over Fq , the average size of an isogeny class is h(OK ) � p

q .

A collision is expected a�erO(
p

h(OK )) = O(q
1
4 ) steps.

Note: Can be used to build trapdoor systems1.

1Teske 2006.
2Galbraith 1999; Galbraith, Hess, and Smart 2002; Bisson and Sutherland 2011.
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Randomwalks and hash functions (circa 2006)
Any expander graph gives rise to a hash function.

v
0

1
1

0
0

1
1

0
0

1
1

0

v 0 H (010101) = v 0

Fix a starting vertex v ;
The value to be hashed determines a random path to v 0;
v 0 is the hash.

Provably secure hash functions
Use the expander graph of supersingular 2-isogenies;a

Collision resistance = hardness of finding cycles in the graph;
Preimage resistance = hardness of finding a path from v to v 0.

aCharles, K. E. Lauter, and Goren 2009; Doliskani, Pereira, and Barreto 2017.
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Randomwalks and key exchange

Let’s try something harder...

1
0

0
1

1
0

0
1

1
0

1
0

0
1 0

1
1

0

0
1

1
0

0
1 0

1
1

0

0
1

1
0

0
1

1
0

0
1

1
0

Public v0

Alice’s public vA Bob’s public vB

Shared secret
...is this even possible?
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Expander graphs from groups

g2

g4
g8

g3

g6

g12

g11

g9

g5
g10

g7

g1

Let G = hgi be a cyclic
group of order p.

Let
S � (Z=pZ)� s.t.
S�1 � S .
The Schreier graph of
(S ;G n f1g) is (usually)
an expander.

x 7! x 2

x 7! x 3

x 7! x 5
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Key exchange from Schreier graphs

g

gA

gB

gBA

= gAB

Public parameters:
A groupG = hgi of order p;
A subset S � (Z=pZ)�.

1 Alice takes a secret random
walk sA : g ! gA of length
O(log p);

2 Bob does the same;
3 They publish gA and gB ;
4 Alice repeats her secret walk

sA starting from gB .
5 Bob repeats his secret walk

sB starting from gA.
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Key exchange from Schreier graphs

g

gA

gB

gBA = gAB

Why does this work?

gA = g2�3�2�5;

gB = g32�5�2;

gBA = gAB = g23�33�52
;

and gA; gB ; gAB are uniformly
distributed inG . . .

. . . Indeed, this is just a twisted
presentation of the classical
Di�ie-Hellman protocol!
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Group action on isogeny graphs

`1-isogenies

`2-isogenies

There is a group action of the
ideal class groupCl(O) on the
set of ordinary curves with
complex multiplication byO.
Its Schreier graph is an isogeny
graph (and an expander if we
take enough generators)
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Key exchange in graphs of ordinary isogenies3 (circa 2006)
Parameters:

E=Fp ordinary elliptic curve with Frobenius endomorphism �,

primes `1,`2,. . . such that
�

D�
`i

�
= 1.

A direction for each `i (i.e. a choice of a root of �2 � t� + q mod `).
Secret data: Randomwalks a; b 2 Cl(O) in the isogeny graph.

E

a � E b � E

ab � E = ba � E

`
a1
1 `

a2
2 � � � = N (a) N (b) = `

b1
1 `

b2
2 � � �

3Couveignes 2006; Rostovtsev and Stolbunov 2006.
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CRS key exchange

Key generation: compose small degree isogenies
(Isogeny Computation Problem)
polynomial in the length of the randomwalk.

Attack: Isogeny Walk Problem
polynomial in the degree, exponential in the length.

Open problem: Make this thing practical!
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Security of CRS

Size of the graph: h(O) � p
p,

Key space size: Exponential in the number of primes `1,`2,. . .
Meet in the middle attack: O( 4

p
p).

The Abelian Hidden Shi� Problem
LetG be a group and S be a set. Given two oracles f0; f1 : G ! S such that
f0(g) = f1(gs) for some s 2 G , find s .

Ordinary isogeny walk! Hidden shi�
To find a secret isogeny walkE0 ! E1, set

f0 : Cl(O)! V f1 : Cl(O)! V
a 7! a � E0 a 7! a � E1

Then the hidden shi� is s such that s � E0 = E1.
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Quantum attack on CRS4

1 Lp(1=2;
p

3=2) classical algorithm for evaluating f0; f1.
2 Hidden Shi� Problem! Dihedral Hidden Subgroup Problem.

Quantum algorithms for dihedral HSP

Kuperberga: 2O(
p

log jGj) quantum time, space and query complexity.
Regevb: LjGj(

1
2 ;
p

2) quantum time and query complexity,
poly(log(jG j) quantum space.

aKuperberg 2005.
bRegev 2004.

4Childs, Jao, and Soukharev 2010.
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Key exchange with supersingular curves (2011)
Good news: there is no action of a commutative class group.
Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two di�erent isogeny graphs on the
same vertex set.

Figure: 2- and 3-isogeny
graphs on F972 .
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Key exchange with supersingular curves
Fix small primes `A, `B ;
No canonical labeling of the `A- and `B -isogeny graphs; however. . .

Walk of length eA
=

Isogeny of degree `eA
A

=
Kernel hPi � E [`eA

A ]

ker� = hPi � E [`eA
A ]

ker = hQi � E [`eB
B ]

ker�0 = h (P)i
ker 0 = h�(Q)i

E E=hPi

E=hQi E=hP ;Qi

�

�0

  0
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Supersingular Isogeny Di�ie-Hellman5

Parameters:
Prime p such that
p + 1 = `aA`

b
B ;

Supersingular curve
E ' (Z=(p + 1)Z)2;

E [`aA] = hPA;QAi;
E [`bB ] = hPB ;QB i.

Secret data:
RA = mAPA + nAQA,

RB = mBPB + nBQB ,

E

E=hRAi

�(PB )

�(QB )

E=hRBi

 (PA)

 (QA)

E=hRAi
�(RB )

' E=hRA;RBi ' E=hRB i
 (RA)

�  

 0 �0

�(RB )  (RA)

5Jao and De Feo 2011; De Feo, Jao, and Plût 2014.
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Generic attacks
Problem: GivenE ;E 0, isogenous of degree `n , find � : E ! E 0.

E

E=hP0i

Ei=hPii

E=hP`n=2i

...

...

E 0

`n=2

`n=2

With high probability � is the unique collision (or claw)O(`n=2).
A quantum claw finding6 algorithm solves the problem inO(`n=3).

6Tani 2009.
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Security

The SIDH problem
GivenE , Alice’s public dataE=hRAi; �(PB ); �(QB ), and Bob’s public data
E=hRB i;  (PA);  (QA), find the shared secretE=hRA;RB i.

Under the SIDH assumption:
The SIDH key exchange protocol is session-key secure.
The derived El Gamal-type PKE is CPA secure.

Reductions
SIDH! Isogeny Walk Problem;
SIDH! Computing the endomorphism rings ofE andE=hRAi.a

aKohel, K. Lauter, Petit, and Tignol 2014; Galbraith, Petit, Shani, and Ti 2016.
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Chosen ciphertext attack7
For simplicity, assume Alice’s prime is ` = 2.

Evil Bob
Alice has a long-term secretR = mP + nQ 2 E [2e ];
Bob produces an ephemeral secret ;
Bob sends to Alice (P);  (Q + 2e�1P);
Alice computes the shared secret correctly i�

R = mP + nQ

= mP + nQ + n2e�1P ;

i.e., i� n is even;
Bob learns one bit of the secret key by checking that Alice gets the
right shared secret.

Bob repeats the queries in a similar fashion, learning one bit per query.
Detecting Bob’s faulty key seems to be as hard as breaking SIDH.

7Galbraith, Petit, Shani, and Ti 2016.
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Bonus: a ZK proof of knowledge8

Secret: knowledge of the kernel of a degree `eA
A isogeny fromE toE=hSi.

E E=hSi

E=hPi E=hP ;Si

�

?

? ?

1 Choose a random pointP 2 E [`eB
B ], compute the diagram;

2 Publish the curvesE=hPi andE=hP ;Si;
3 The verifier asks one of the two questions:

I Reveal the degree `eB
B isogenies;

I Reveal the bottom isogeny.

Can derive Fiat-Shamir signatures: secure under SIDH. . .but very slow!

8De Feo, Jao, and Plût 2014.
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SIKE: Supersingular Isogeny Key Encapsulation

Submission to the NIST PQ competition:
SIKE.PKE: El Gamal-type systemwith IND-CPA security proof,
SIKE.KEM: generically transformed systemwith IND-CCA security

proof.
Security levels 1, 3 and 5.
Smallest communication complexity among all proposals in each level.
Slowest among all benchmarked proposals in each level.
A team of 14 submitters, from 8 universities and companies.
Download the package here.

p cl. security q. security speed comm.
SIKEp503 22503159 � 1 126 bits 84 bits 10ms 0.4KB
SIKEp751 23723239 � 1 188 bits 125 bits 30ms 0.6KB
SIKEp964 24863301 � 1 241 bits 161 bits 0.8KB
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Parameter choices

For e�iciency: p = 2a3b � 1, with a even;
For security:

a � (log2 3)b �
(

2� classical security parameter,
3� quantum security parameter;

For verifiability:
Special starting curveE0 : y2 = x 3 + x ;
PA;QA;PB ;QB chosen as the lexicographically first
points satisfying the necessary conditions.
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Implementation: finite field
Arithmetic in Fp

p = 2a3b � 1 lends itself to optimizations:
I Adapted Comba-based Montgomery reductiona,
I Adapted Barret reductionb;
I Assembly optimized.

aCostello, Longa, and Naehrig 2016.
bKarmakar, Roy, Vercauteren, and Verbauwhede 2016.

Arithmetic in Fp2

Because p = �1 mod 4, then�1 is not a quadratic residue in Fp . We
define Fp2 = Fp [i ] = Fp [X ]=(X 2 + 1).

Arithmetic similar toQ[i ];
Karatsuba-like formulas for multiplication and squaring;
Inversion only requires one inversion in Fp ;
Optimizations similar to pairing-base crypto (e.g., BN254).
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Implementation: curves

Montgomery curves
Not a Weierstrass equation:

by2 = x 3 + ax 2 + x

Only possible for curves with a 4-torsion point (we’re lucky);
Very e�icient arithmetic inXZ -coordinates: identify�P by dropping
theY -coordinate

Doubling:

[2](X : � : Z ) =
�
(X 2 � Z 2)2 : � : 4XZ (X 2 + aXZ + Z 2)

�
Tripling:

[3](X : � : Z ) =
�
X (X 4

�6X 2Z 2
�4aXZ 3

�3Z 4) : � : Z (3X 4+4aX 3Z+6X 2Z 3
�Z 4)

�
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Implementation: curves
ComputingmP + nQ

Observe thatmP + nQ andP + (n=m)Q generate the same isogeny
kernel;
Constant time Montgomery ladder tailoreda toP + cQ .
For simplicity and constant-time sampling, SIKE secret keys are
restricted toP + cQ with c 2 [0; : : : ; 2x � 1].

aFaz-Hernández, López, Ochoa-Jiménez, and Rodríguez-Henríquez 2017.

Input P = (XP : ZP );Q = (XQ : ZQ);P �Q = (XP�Q : ZP�Q),
a scalar c;

Output P + cQ .

1 SetR0 = Q ; R1 = P ; R2 = Q � P
2 For i from 0 to blog2 cc:

I if ci = 0, let R0;R1 = 2R0; R0 + R1;
I if ci = 1, let R0;R2 = 2R0; R0 + R2;

3 ReturnR1.
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Implementation: isogenies
Vélu’s formulas
Given a groupG � E , the isogeny � : E ! E=G is defined by:

�(P) =

0
@x (P) +

X
Q2GnfOg

x (P + Q)� x (Q); y(P) +
X

Q2GnfOg

y(P + Q)� y(Q)

1
A :

3-isogenies of Montgomery curves
LetP = (X3 : Z3) be a point of order 3 on by2 = x 3 + ax 2 + x . The curve
E=hPi has equation by2 = x 3 + a 0x 2 + x where

a 0 = (aX3Z3 + 6(Z 2
3 �X 2

3 ))X3=Z 3
3 :

It is defined by the map

�(X : Z ) =
�
X (X3X � Z3Z )2 : Z (Z3X �X3Z )2

�
:

Similar formula for 4-isogenies.
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Implementation: isogeny walks
ord(R) = `e and � = �0 � �1 � � � � � �e�1, each of degree `

R

R1

R2

R3

R4

R5

[`1]R

[`2]R

[`3]R

[`4]R

[`5]R

�0

�0

�0

�0

�0

�1

�1

�1

�1

�2

�2

�2

�3

�3 �4

[`]

[`]

[`]

[`]

[`]

[`4]R1 [`3]R2 [`2]R3 [`1]R4

�

� �

� � �

� � � �

� � � � �

� � � � � �

For each i , one needs to compute [`e�i ]Ri in order to compute �i .
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Implementation: isogeny walks

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

�� �� � �� � � �

Figure: The seven well formed strategies for e = 4.

Right edges are `-isogeny evaluation;
Le� edges are multiplications by ` (about twice as expensive);
The best strategy can be precomputed o�line and hardcoded.
Evaluation is done in constant time!
Pre-computed optimized strategies are given in the SIKE submission
document.
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Example

Figure: Optimal strategy for e = 512, ` = 2.
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Implementation: constant time
Secret key sampling in constant time by restricting key space;
P + cQ in constant time via Montgomery ladder;
Isogeny walk in constant time via any strategy.

Finite field operations in constant time
Only problem is to avoid inversions as much as possible, but Vélu’s
formulas require one inversion per curve on the walk.
Solutiona: projectivize curve equations

E : CBy2 = Cx 3 +Ax 2 +Cx :
Slightly increases operation counts of formulas;
Delays all inversions to the very end;
Only the value (A : C ) is needed in computations. Then:

j (E) =
256(A2 � 3C 2)

C 4(A2 � 4C 2)
:

aCostello, Longa, and Naehrig 2016.

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Mar 19–23, 2018 — Post-Scryptum 65 / 75



Summary
Public parameters:

p = 2a3b � 1,
Staring curveE : y2 = x 3 + x ,
Torsion generators

PA = (Xa1 : Za1); QA = (Xa2 : Za2); PA �QA = (Xa3 : Za3);

PB = (Xb1 : Zb1); QB = (Xb2 : Zb2); PB �QB = (Xb3 : Zb3):

Secret keys:
RA = PA + cQA with c 2 [0; : : : ; 2a � 1],
RB = PA + cQA with c 2 [0; : : : ; 2bblog2 3c � 1].

Public keys (curve equation can be interpolated from three points):
�(PB ); �(QB ); �(PB �QB ),
 (PA);  (QA);  (PA �QA).

Shared secret:
j = 256(A2 � 3C 2)=C 4(A2 � 4C 2).
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Thank you

http://defeo.lu/

@luca_defeo
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