Isogeny graphs in cryptography

Luca De Feo

Université Paris Saclay, UVSQ & Inria

March 19-23, 2018, Post-Scryptum Spring School, Les 7 Laux

Slides online at http://defeo.lu/docet/

Photo courtesy of Elisa Lorenzo-García

Overview

Foundations

- Elliptic curves
- Isogenies
- Complex multiplication

Isogeny-based cryptography

- Isogeny walks
- Key exchange from ordinary graphs
- Key exchange from supersingular graphs
- The SIKE submission

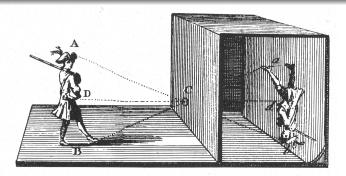
Projective space

Definition (Projective space)

Let \bar{k} an algebraically closed field, the projective space $\mathbb{P}^n(\bar{k})$ is the set of non-null (n + 1)-tuples $(x_0, \ldots, x_n) \in \bar{k}^n$ modulo the equivalence relation

$$(x_0,\ldots,x_n)\sim (\lambda x_0,\ldots,\lambda x_n) \qquad ext{with } \lambda\in ar k\setminus\{0\}.$$

A class is denoted by $(x_0 : \cdots : x_n)$.



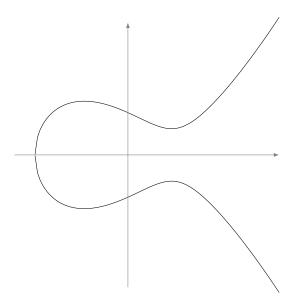
Luca De Feo (U Paris Saclay)

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve *defined over* k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.



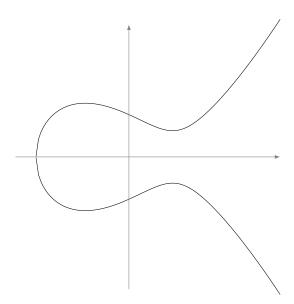
Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

• $\mathcal{O} = (0:1:0)$ is the point at infinity;



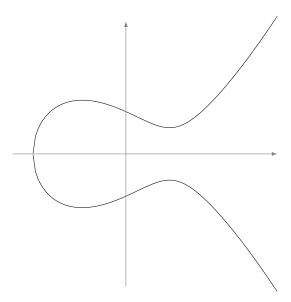
Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

- $\mathcal{O} = (0:1:0)$ is the point at infinity;
- $y^2 = x^3 + ax + b$ is the affine equation.

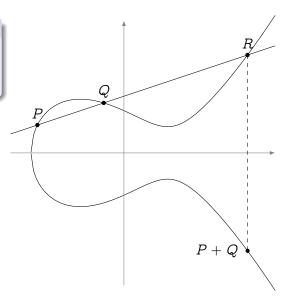


The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.



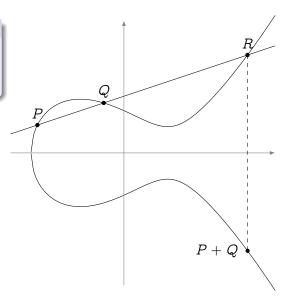
The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

• The law is algebraic (it has formulas);



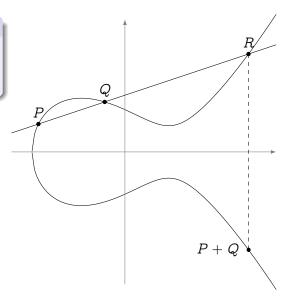
The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- \mathcal{O} is the group identity;
- Opposite points have the same *x*-value.



Group structure

Torsion structure

Let E be defined over an algebraically closed field \overline{k} of characteristic p.

$$E[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$
 if $p \nmid m$,
 $E[p^e] \simeq egin{cases} \mathbb{Z}/p^e\mathbb{Z} & ext{ordinary case,} \\ \{\mathcal{O}\} & ext{supersingular case.} \end{cases}$

Free part

Let *E* be defined over a number field *k*, the group of *k*-rational points E(k) is finitely generated.

Maps: isomorphisms

Isomorphisms

The only invertible algebraic maps between elliptic curves are of the form

$$(x,y)\mapsto (u^2x,u^3y)$$

for some $u \in \overline{k}$. They are group isomorphisms.

j-Invariant

Let
$$E$$
 : $y^2 = x^3 + ax + b$, its *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

Maps: isogenies

Theorem

Let $\phi : E \to E'$ be a map between elliptic curves. These conditions are equivalent:

- φ is a surjective group morphism,
- ϕ is a group morphism with finite kernel,
- φ is a non-constant algebraic map of projective varieties sending the point at infinity of E onto the point at infinity of E'.

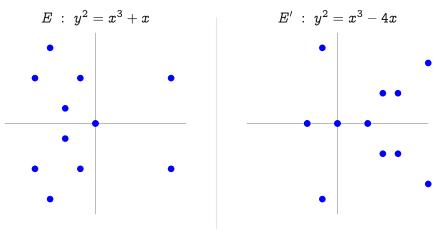
If they hold ϕ is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

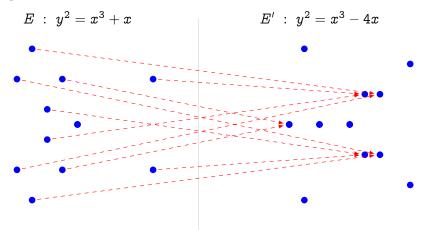
Example: Multiplication-by-m

On any curve, an isogeny from E to itself (i.e., an endomorphism):

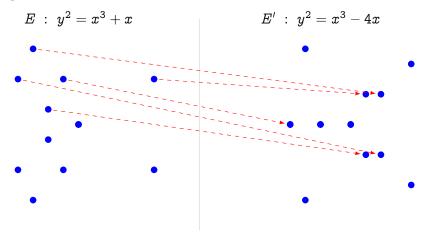
$$egin{array}{rcl} [m] & \colon & E o E, \ & P \mapsto [m]P \end{array}$$



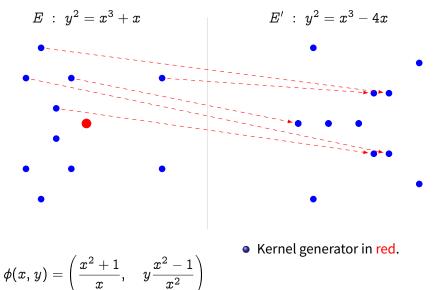
$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

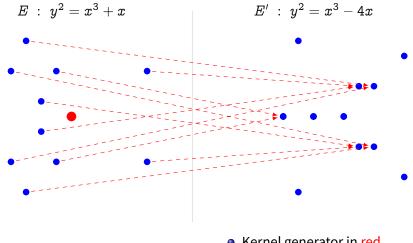


$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$



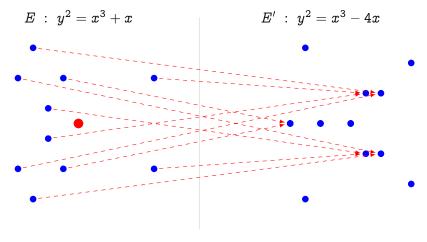
$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$





$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.



$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- Analogous to $x \mapsto x^2$ in \mathbb{F}_q^* .

Curves over finite fields

Frobenius endomorphism

Let *E* be defined over \mathbb{F}_q . The Frobenius endomorphism of *E* is the map

$$\pi : (X:Y:Z) \mapsto (X^q:Y^q:Z^q).$$

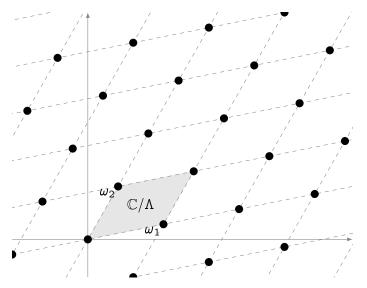
Hasse's theorem

Let *E* be defined over \mathbb{F}_q , then

$$|\#E(k)-q-1|\leq 2\sqrt{q}.$$

Serre-Tate theorem

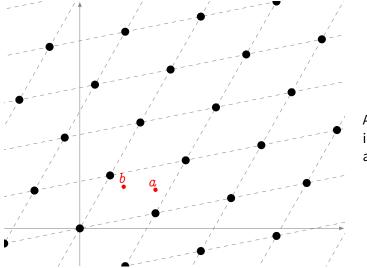
Two elliptic curves E, E' defined over a finite field k are isogenous over k if and only if #E(k) = #E'(k).

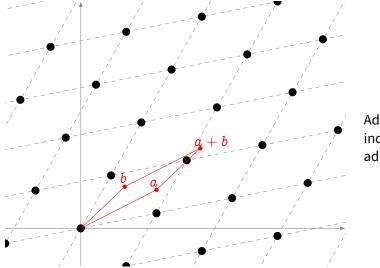


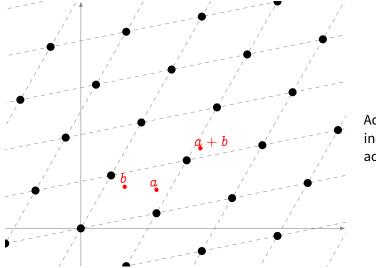
Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent complex numbers. Set

 $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$

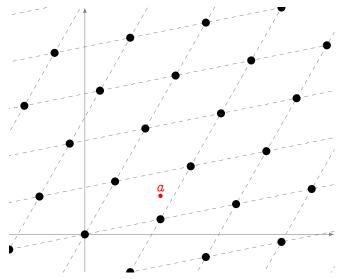
 \mathbb{C}/Λ is a complex torus.



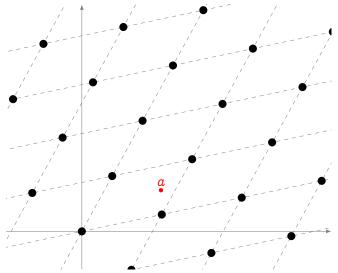




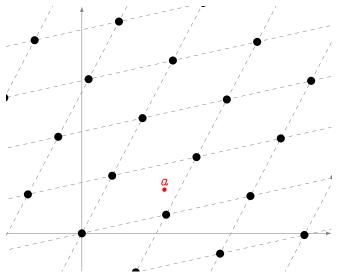




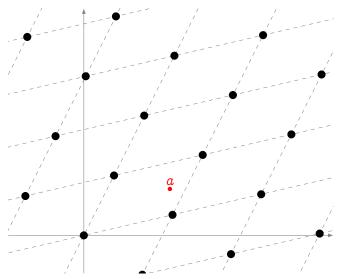
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



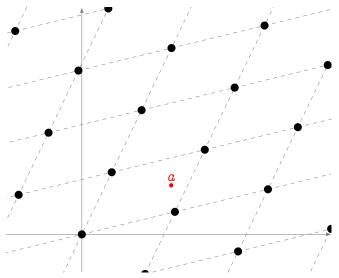
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



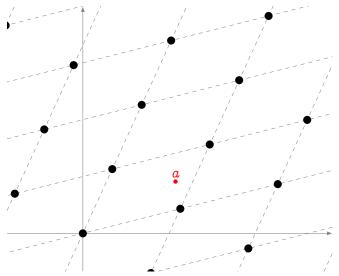
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



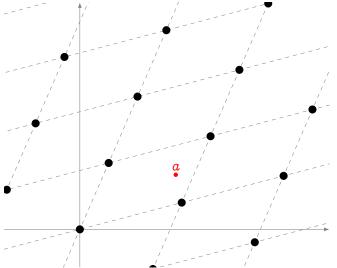
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



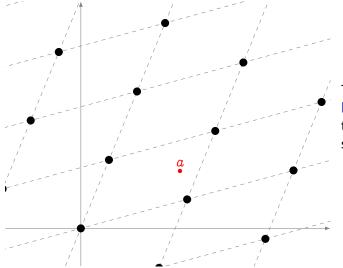
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



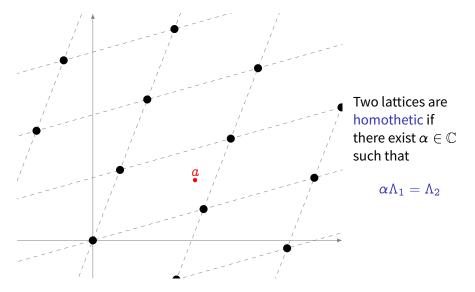
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

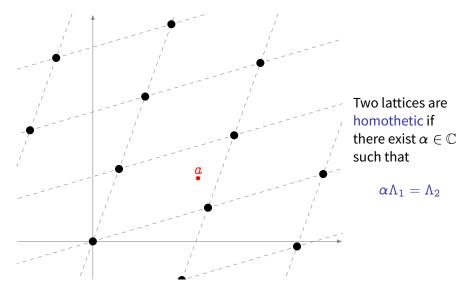


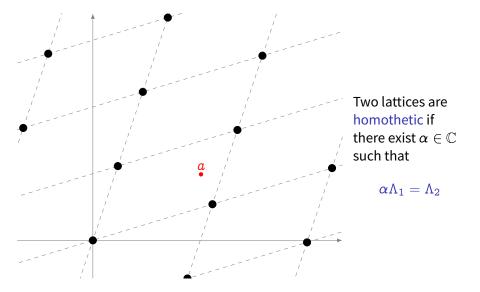
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

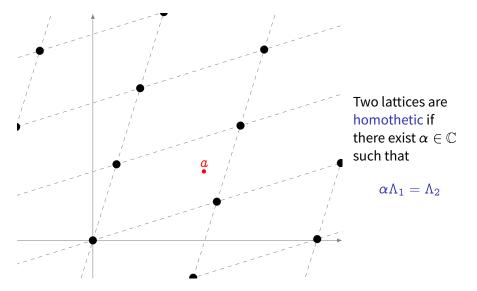


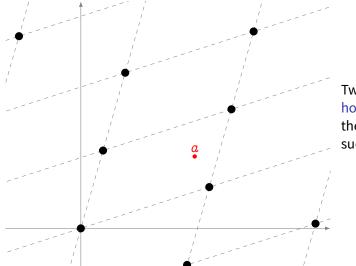
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



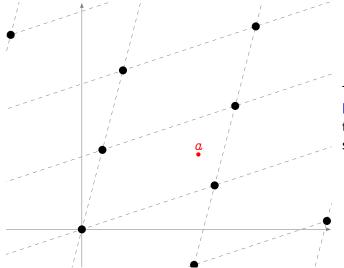




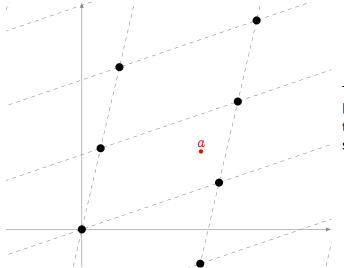




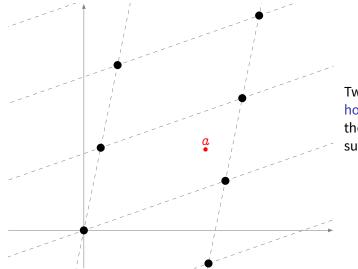
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



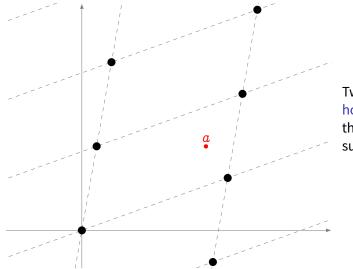
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



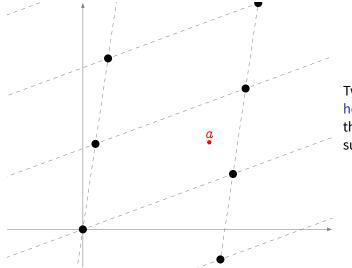
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



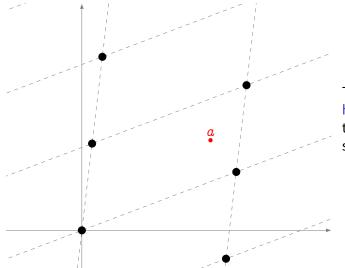
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



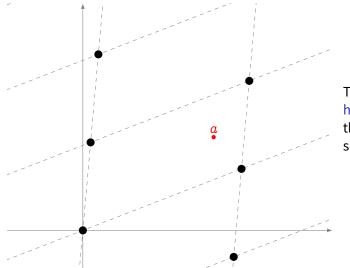
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



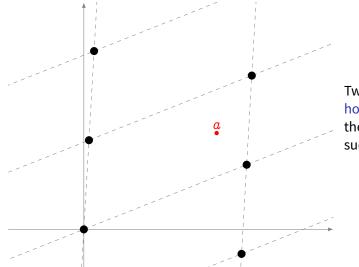
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



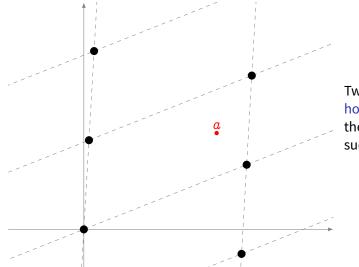
Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that



Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

The *j*-invariant

We want to classify complex lattices/tori up to homothety.

Eisenstein series

Let Λ be a complex lattice. For any integer k>0 define

$$G_{2k}(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-2k}.$$

Also set

$$g_2(\Lambda)=60\,G_4(\Lambda),\qquad g_3(\Lambda)=140\,G_6(\Lambda).$$

Modular *j*-invariant

Let Λ be a complex lattice, the modular *j*-invariant is

$$j(\Lambda)=1728rac{g_2(\Lambda)^3}{g_2(\Lambda)^3-27g_3(\Lambda)^2}.$$

Two lattices Λ , Λ' are homothetic if and only if $j(\Lambda) = j(\Lambda')$.

Elliptic curves over $\mathbb C$

Weierstrass p function

Let Λ be a complex lattice, the Weierstrass \wp function associated to Λ is the series

$$\wp(z;\Lambda) = rac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight).$$

Fix a lattice Λ , then \wp and its derivative \wp' are elliptic functions:

$$\wp(z+\omega)=\wp(z),\qquad \wp'(z+\omega)=\wp'(z)$$

for all $\omega \in \Lambda$.

Uniformization theorem

Let Λ be a complex lattice. The curve

$$E : y^2 = 4x^3 - g_2(\Lambda)x - g_3(\Lambda)$$

is an elliptic curve over $\mathbb{C}.$ The map

$$egin{aligned} \mathbb{C}/\Lambda &
ightarrow E(\mathbb{C}), \ 0 &\mapsto (0:1:0), \ z &\mapsto (oldsymbol{
ho}(z):oldsymbol{arphi}'(z):1) \end{aligned}$$

is an isomorphism of Riemann surfaces and a group morphism. Conversely, for any elliptic curve

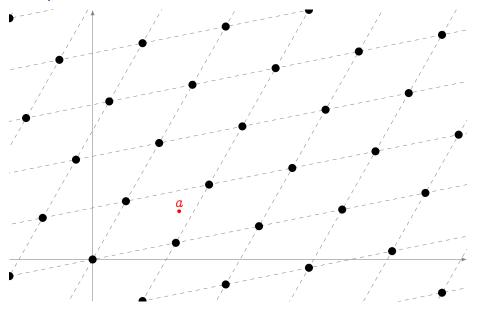
$$E : y^2 = x^3 + ax + b$$

there is a unique complex lattice $\boldsymbol{\Lambda}$ such that

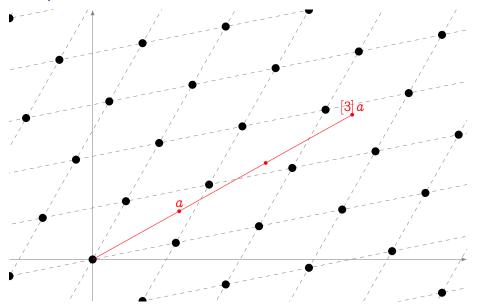
$$g_2(\Lambda)=-4a, \qquad g_3(\Lambda)=-4b.$$

Moreover $j(\Lambda) = j(E)$.

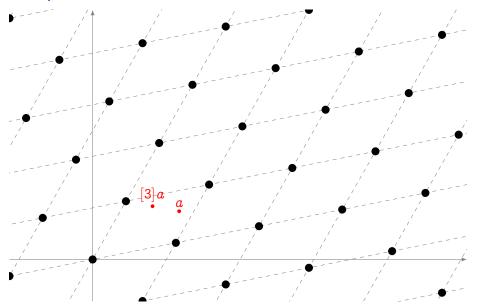
Multiplication



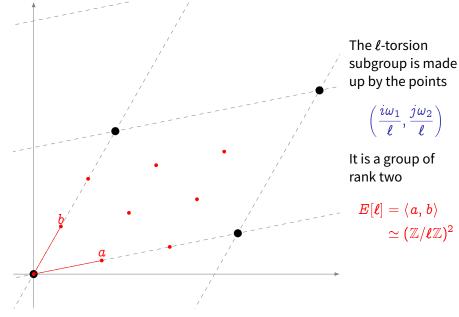
Multiplication

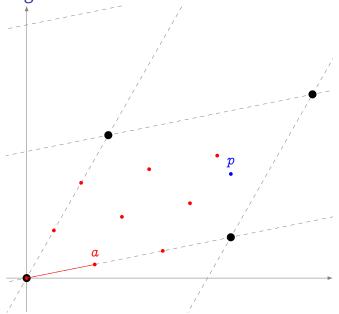


Multiplication



Torsion subgroups





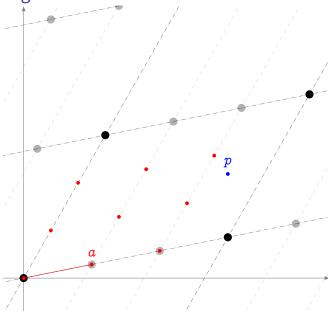
Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a \mathbb{Z} \oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi:\mathbb{C}/\Lambda_1 o\mathbb{C}/\Lambda_2$

 \$\phi\$ is a morphism of complex Lie groups and is called an isogeny.



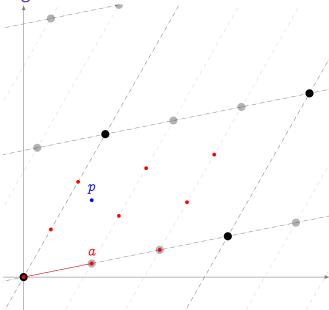
Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z}\oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi:\mathbb{C}/\Lambda_1 o\mathbb{C}/\Lambda_2$

 \$\phi\$ is a morphism of complex Lie groups and is called an isogeny.



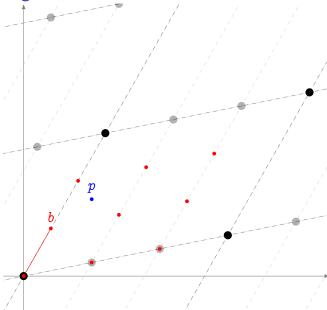
Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z}\oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi:\mathbb{C}/\Lambda_1 o\mathbb{C}/\Lambda_2$

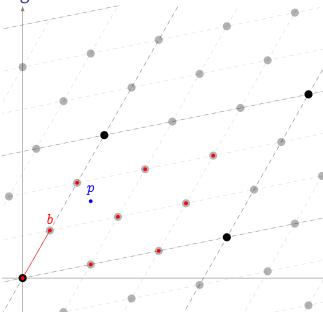
 \$\phi\$ is a morphism of complex Lie groups and is called an isogeny.



Taking a point **b** not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

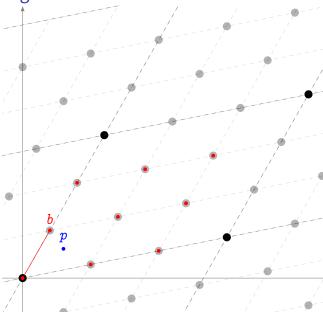
The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .



Taking a point bnot in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{oldsymbol{\phi}}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .



Taking a point bnot in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{oldsymbol{\phi}}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Isogenies: back to algebra

Let $\phi: E o E'$ be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- $\phi^*k(E')$ is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

Degree, separability

- The degree of ϕ is deg $\phi = [k(E) : \phi^* k(E')]$. It is always finite.
- ϕ is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- If ϕ is separable, then deg $\phi = \# \ker \phi$.
- If ϕ is purely inseparable, then ker $\phi = \{\mathcal{O}\}$ and deg ϕ is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

Isogenies: back to algebra

Let $\phi: E o E'$ be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- $\phi^*k(E')$ is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

Degree, separability

- The degree of ϕ is deg $\phi = [k(E) : \phi^* k(E')]$. It is always finite.
- 2 ϕ is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- If ϕ is separable, then deg $\phi = \# \ker \phi$.
- If ϕ is purely inseparable, then ker $\phi = \{\mathcal{O}\}$ and deg ϕ is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

Isogenies: separable vs inseparable

Purely inseparable isogenies

Examples:

- The Frobenius endomorphism is purely inseparable of degree q.
- All purely inseparable maps in characteristic p are of the form $(X : Y : Z) \mapsto (X^{p^e} : Y^{p^e} : Z^{p^e}).$

Separable isogenies

Let *E* be an elliptic curve, and let *G* be a finite subgroup of *E*. There are a unique elliptic curve *E'* and a unique separable isogeny ϕ , such that $\ker \phi = G$ and $\phi : E \to E'$. The curve *E'* is called the quotient of *E* by *G* and is denoted by *E/G*.

The dual isogeny

Let $\phi: E o E'$ be an isogeny of degree m. There is a unique isogeny $\hat{\phi}: E' o E$ such that

$$\hat{\phi}\circ\phi=[m]_E, \quad \phi\circ\hat{\phi}=[m]_{E'}.$$

 $\hat{\phi}$ is called the dual isogeny of ϕ ; it has the following properties:

Algebras, orders

- A quadratic imaginary number field is an extension of \mathbb{Q} of the form $Q[\sqrt{-D}]$ for some non-square D > 0.
- A quaternion algebra is an algebra of the form Q + αQ + βQ + αβQ, where the generators satisfy the relations

$$lpha^2,eta^2\in\mathbb{Q},\quad lpha^2<0,\quad eta^2<0,\quad etalpha=-lphaeta.$$

Orders

Let K be a finitely generated \mathbb{Q} -algebra. An order $\mathcal{O} \subset K$ is a subring of K that is a finitely generated \mathbb{Z} -module of maximal dimension. An order that is not contained in any other order of K is called a maximal order.

Examples:

- \mathbb{Z} is the only order contained in \mathbb{Q} ,
- $\mathbb{Z}[i]$ is the only maximal order of $\mathbb{Q}[i]$,
- $\mathbb{Z}[\sqrt{5}]$ is a non-maximal order of $\mathbb{Q}[\sqrt{5}]$,
- The ring of integers of a number field is its only maximal order,
- In general, maximal orders in quaternion algebras are not unique.

Luca De Feo (U Paris Saclay)

The endomorphism ring

The endomorphism ring $\operatorname{End}(E)$ of an elliptic curve E is the ring of all isogenies $E \to E$ (plus the null map) with addition and composition.

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p. End(E) is isomorphic to one of the following:

•
$$\mathbb{Z}$$
, only if $p = 0$

E is ordinary.

• An order \mathcal{O} in a quadratic imaginary field:

E is ordinary with complex multiplication by \mathcal{O} .

• Only if p > 0, a maximal order in a quaternion algebra^{*a*}:

E is supersingular.

^{*a*}(ramified at p and ∞)

The finite field case

Theorem (Hasse)

Let E be defined over a finite field. Its Frobenius endomorphism π satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0$$

in End(*E*) for some $|t| \le 2\sqrt{q}$, called the trace of π . The trace *t* is coprime to *q* if and only if *E* is ordinary.

Suppose *E* is ordinary, then $D_{\pi} = t^2 - 4q < 0$ is the discriminant of $\mathbb{Z}[\pi]$.

• $K = \mathbb{Q}[\pi] = \mathbb{Q}[\sqrt{D_{\pi}}]$ is the endomorphism algebra of E.

• Denote by \mathcal{O}_K its ring of integers, then

$$\mathbb{Z}
eq \mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset \mathcal{O}_K.$$

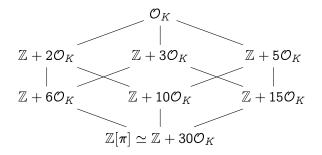
In the supersingular case, π may or may not be in \mathbb{Z} , depending on q.

Endomorphism rings of ordinary curves

Classifying quadratic orders

Let K be a quadratic number field, and let \mathcal{O}_K be its ring of integers.

- Any order O ⊂ K can be written as O = Z + fO_K for an integer f, called the conductor of O, denoted by [O_k : O].
- If d_K is the discriminant of K, the discriminant of \mathcal{O} is $f^2 d_K$.
- If $\mathcal{O}, \mathcal{O}'$ are two orders with discriminants d, d', then $\mathcal{O} \subset \mathcal{O}'$ iff d' | d.



Isogeny volcanoes

Serre-Tate theorem reloaded

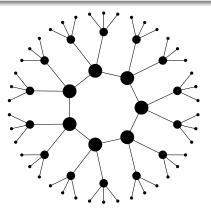
Two elliptic curves E, E' defined over a finite field are isogenous iff their endomorphism algebras $\operatorname{End}(E) \otimes \mathbb{Q}$ and $\operatorname{End}(E') \otimes \mathbb{Q}$ are isomorphic.

Isogeny graphs

- Vertices are curves up to isomorphism,
- Edges are isogenies up to isomorphism.

Isogeny volcanoes

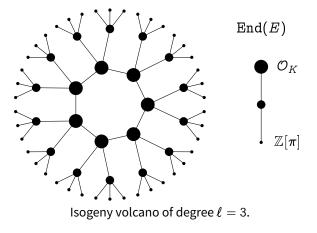
- Curves are ordinary,
- Isogenies all have degree a prime *l*.



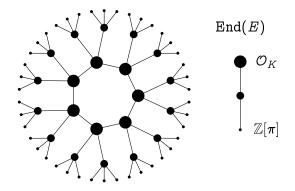
Volcanology I

Let E, E' be curves with respective endomorphism rings $\mathcal{O}, \mathcal{O}'$. Let $\phi : E \to E'$ be an isogeny of prime degree ℓ , then:

$$\begin{array}{ll} \text{if } \mathcal{O} = \mathcal{O}', & \phi \text{ is horizontal;} \\ \text{if } [\mathcal{O}' : \mathcal{O}] = \ell, & \phi \text{ is ascending;} \\ \text{if } [\mathcal{O} : \mathcal{O}'] = \ell, & \phi \text{ is descending.} \end{array}$$



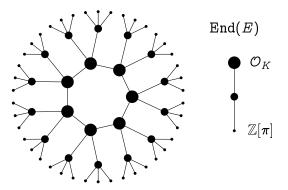
Volcanology II



		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K:\mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\pmb{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	l
$\boldsymbol{\ell} \mid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\pmb{\ell} mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

Volcanology II

 $\mathsf{Height} = v_\ell([\mathcal{O}_K : \mathbb{Z}[\pi]]).$

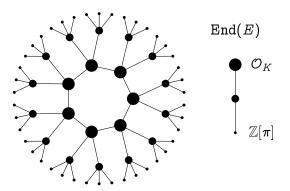


		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	l
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\pmb{\ell} mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

Volcanology II

 $\mathsf{Height} = v_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$

How large is the crater?



		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\pmb{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	l
$\boldsymbol{\ell} \mid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\pmb{\ell} mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

The class group

Let $\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

The class group

The class group of $\mathcal O$ is

$$\mathrm{Cl}(\mathcal{O})=\mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order $h(\mathcal{O})$ is called the class number of \mathcal{O} .
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

The a-torsion

- Let a ⊂ O be an (integral invertible) ideal of O;
- Let E[α] be the subgroup of E annihilated by α:

 $E[\mathfrak{a}] = \{P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a}\};$

• Let $\phi: E \to E_{\mathfrak{a}}$, where $E_{\mathfrak{a}} = E/E[\mathfrak{a}]$.

Then $\operatorname{End}(E_{\mathfrak{a}}) = \mathcal{O}$ (i.e., ϕ is horizontal).

Theorem (Complex multiplication)

The action on the set of elliptic curves with complex multiplication by \mathcal{O} defined by $\mathfrak{a} * j(E) = j(E_{\mathfrak{a}})$ factors through $\operatorname{Cl}(\mathcal{O})$, is faithful and transitive.

Corollary

Let $\operatorname{End}(E)$ have discriminant D. Assume that $\left(\frac{D}{\ell}\right) = 1$, then E is on a crater of an ℓ -volcano, and the crater contains $h(\operatorname{End}(E))$ curves.

Luca De Feo (U Paris Saclay)

Supersingular graphs

- Every supersingular curve is defined over 𝑘_{p²}.
- For every maximal order type of the quaternion algebra Q_{p,∞} there are 1 or 2 curves over F_{p²} having endomorphism ring isomorphic to it.
- There is a unique isogeny class of supersingular curves over 𝔽_p of size ~ p/12.
- Left ideals act on the set of maximal orders like isogenies.
- The graph of ℓ -isogenies is $(\ell + 1)$ -regular.

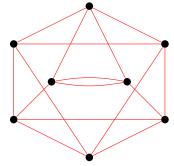


Figure: 3-isogeny graph on \mathbb{F}_{97^2} .

Overview

Foundations

- Elliptic curves
- Isogenies
- Complex multiplication

Isogeny-based cryptography

- Isogeny walks
- Key exchange from ordinary graphs
- Key exchange from supersingular graphs
- The SIKE submission

Isogeny graphs

- Vertices are curves up to isomorphism,
- Edges are isogenies up to isomorphism.

Ordinary case

- *l*-isogeny graphs form volcanoes.
- The height of the volcano is given by the conductor of $\mathbb{Z}[\pi]$.
- All curves on the same level have the same endomorphism ring (have complex multiplication by the same order \mathcal{O}).
- Type of summit (one curve, two curves, crater) determined by $\left(\frac{D}{\ell}\right)$.
- Size of the crater is $h(\mathcal{O})$, and $\operatorname{Cl}(\mathcal{O})$ acts on it.

Supersingular case

- There are ~ p/12 supersingular j-invariants, all defined over 𝔽_{p²}.
- ℓ -isogeny graphs are $(\ell + 1)$ -regular and connected.

Graphs lexicon

- Degree: Number of (outgoing/ingoing) edges.
- *k*-regular: All vertices have degree *k*.
- Connected: There is a path between any two vertices.
 - Distance: The length of the shortest path between two vertices. Diamater: The longest distance between two vertices.
- $\lambda_1 \geq \cdots \geq \lambda_n$: The (ordered) eigenvalues of the adjacency matrix.

Expander graphs

Proposition

If G is a k-regular graph, its largest and smallest eigenvalues satisfy

$$k = \lambda_1 \ge \lambda_n \ge -k.$$

Expander families

An infinite family of connected k-regular graphs on n vertices is an expander family if there exists an $\epsilon > 0$ such that all non-trivial eigenvalues satisfy $|\lambda| \le (1 - \epsilon)k$ for n large enough.

- Expander graphs have short diameter ($O(\log n)$);
- Random walks mix rapidly (after $O(\log n)$ steps, the induced distribution on the vertices is close to uniform).

Expander graphs from isogenies

Theorem (Pizer 1990, 1998)

Let ℓ be fixed. The family of graphs of supersingular curves over \mathbb{F}_{p^2} with ℓ -isogenies, as $p \to \infty$, is an expander family^a.

^{*a*}Even better, it has the Ramanujan property.

In the ordinary case, for all primes $\ell \nmid t^2 - 4q$:

- 50% of ℓ-isogeny graphs are isolated points,
- 50% of ℓ-isogeny graphs are cycles.

$$egin{pmatrix} rac{D_K}{\ell} &= -1 \ \left(rac{D_K}{\ell}
ight) = +1 \end{split}$$

Theorem (Jao, Miller, and Venkatesan 2009)

Let $\mathcal{O} \subset \mathbb{Q}[\sqrt{-D}]$ be an order in a quadratic imaginary field. The graphs of all curves over \mathbb{F}_q with complex multiplication by \mathcal{O} , with isogenies of prime degree bounded^{*a*} by $(\log q)^{2+\delta}$, are expanders.

^aMay contain traces of GRH.

1996 Couveignes suggests isogeny-based key-exchange at a seminar in École Normale Supérieure;

1997 He submits "Hard Homogeneous Spaces" to Crypto;

- 1996 Couveignes suggests isogeny-based key-exchange at a seminar in École Normale Supérieure;
- 1997 He submits "Hard Homogeneous Spaces" to Crypto;
- 1997 His paper gets rejected;

- 1996 Couveignes suggests isogeny-based key-exchange at a seminar in École Normale Supérieure;
- 1997 He submits "Hard Homogeneous Spaces" to Crypto;
- 1997 His paper gets rejected;
- 1997–2006 ... Nothing happens for about 10 years.

- 1996 Couveignes suggests isogeny-based key-exchange at a seminar in École Normale Supérieure;
- 1997 He submits "Hard Homogeneous Spaces" to Crypto;
- 1997 His paper gets rejected;
- 1997–2006 ... Nothing happens for about 10 years.

Ok. Let's move on to the next 10 years!

Isogeny computation

Given an elliptic curve E with Frobenius endomorphism π , and a subgroup $G \subset E$ such that $\pi(G) = G$, compute the rational fractions and the image curve of the separable isogeny $\phi : E \to E/G$.

Explicit isogeny

Given two elliptic curves E, E' over a finite field, isogenous of known degree d, find an isogeny $\phi : E \to E'$ of degree d.

Isogeny walk

Isogeny computation

$\operatorname{poly}(\#G)$

Given an elliptic curve E with Frobenius endomorphism π , and a subgroup $G \subset E$ such that $\pi(G) = G$, compute the rational fractions and the image curve of the separable isogeny $\phi : E \to E/G$.

Explicit isogeny

Given two elliptic curves E, E' over a finite field, isogenous of known degree d, find an isogeny $\phi : E \to E'$ of degree d.

Isogeny walk

Isogeny computation

$\operatorname{poly}(\#G)$

Given an elliptic curve E with Frobenius endomorphism π , and a subgroup $G \subset E$ such that $\pi(G) = G$, compute the rational fractions and the image curve of the separable isogeny $\phi : E \to E/G$.

Explicit isogeny

poly(d)

Given two elliptic curves E, E' over a finite field, isogenous of known degree d, find an isogeny $\phi : E \to E'$ of degree d.

Isogeny walk

Isogeny computation

$\operatorname{poly}(\#G)$

Given an elliptic curve E with Frobenius endomorphism π , and a subgroup $G \subset E$ such that $\pi(G) = G$, compute the rational fractions and the image curve of the separable isogeny $\phi : E \to E/G$.

Explicit isogeny

poly(d)

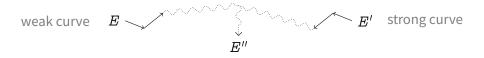
Given two elliptic curves E, E' over a finite field, isogenous of known degree d, find an isogeny $\phi : E \to E'$ of degree d.

Isogeny walk

 $\exp(\log \# k)$

Isogeny walks and cryptanalysis² (circa 2000)

Fact: Having a weak DLP is not (always) isogeny invariant.



Fourth root attacks

- Start two random walks from the two curves and wait for a collision.
- Over \mathbb{F}_q , the average size of an isogeny class is $h(\mathcal{O}_K) \sim \sqrt{q}$.
- A collision is expected after $O(\sqrt{h(\mathcal{O}_K)}) = O(q^{\frac{1}{4}})$ steps.

Note: Can be used to build trapdoor systems¹.

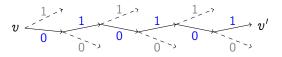
²Galbraith 1999; Galbraith, Hess, and Smart 2002; Bisson and Sutherland 2011.

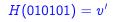
Luca De Feo (U Paris Saclay)

Isogeny graphs in cryptography

¹Teske 2006.

Random walks and hash functions (circa 2006) Any expander graph gives rise to a hash function.





- Fix a starting vertex v;
- The value to be hashed determines a random path to v';
- v' is the hash.

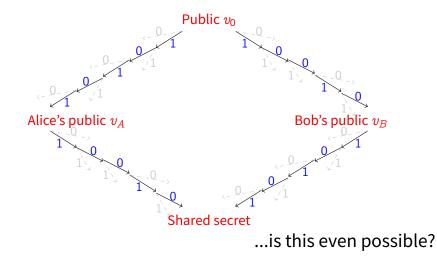
Provably secure hash functions

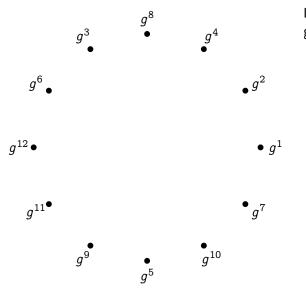
- Use the expander graph of supersingular 2-isogenies;^a
- Collision resistance = hardness of finding cycles in the graph;
- Preimage resistance = hardness of finding a path from v to v'.

^aCharles, K. E. Lauter, and Goren 2009; Doliskani, Pereira, and Barreto 2017.

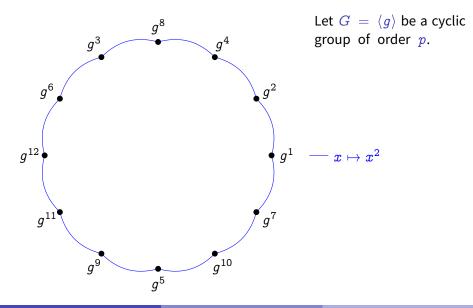
Random walks and key exchange

Let's try something harder...

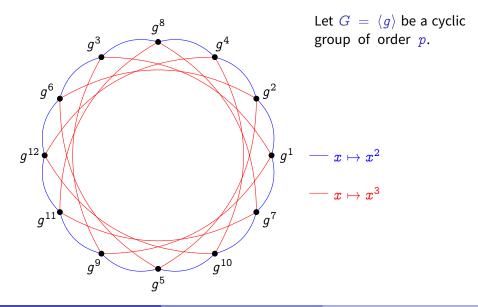


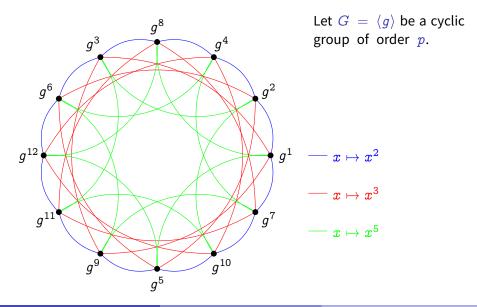


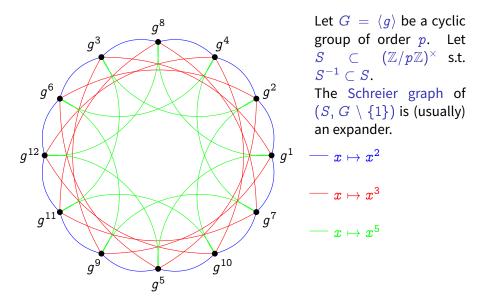
Let $G = \langle g \rangle$ be a cyclic group of order p.



Luca De Feo (U Paris Saclay)



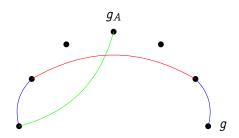




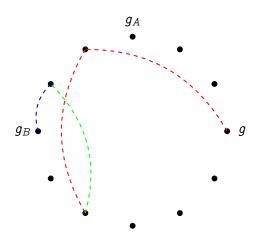
Public parameters:

q

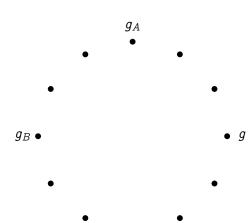
- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.



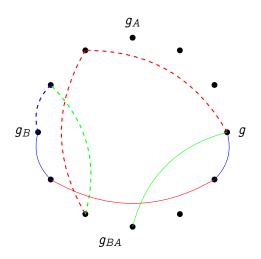
- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;



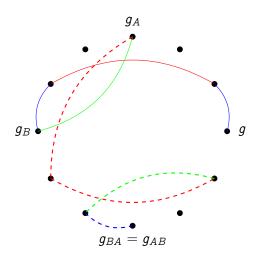
- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;
- Bob does the same;



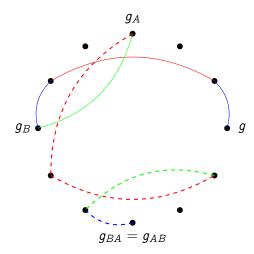
- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;
- Bob does the same;
- They publish g_A and g_B;



- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;
- Bob does the same;
- 3 They publish g_A and g_B ;
- 3 Alice repeats her secret walk s_A starting from g_B .



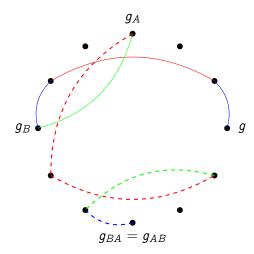
- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;
- Bob does the same;
- 3 They publish g_A and g_B ;
- 3 Alice repeats her secret walk s_A starting from g_B .
- Solution **Bob** repeats his secret walk s_B starting from g_A .



Why does this work?

$$egin{aligned} g_A &= g^{2\cdot 3\cdot 2\cdot 5},\ g_B &= g^{3^2\cdot 5\cdot 2},\ g_{BA} &= g_{AB} &= g^{2^3\cdot 3^3\cdot 5^2}; \end{aligned}$$

and g_A , g_B , g_{AB} are uniformly distributed in G...



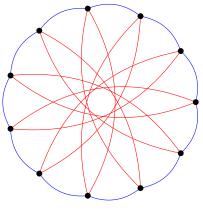
Why does this work?

$$egin{aligned} g_A &= g^{2\cdot 3\cdot 2\cdot 5},\ g_B &= g^{3^2\cdot 5\cdot 2},\ g_{BA} &= g_{AB} &= g^{2^3\cdot 3^3\cdot 5^2}; \end{aligned}$$

and g_A , g_B , g_{AB} are uniformly distributed in G...

...Indeed, this is just a twisted presentation of the classical Diffie-Hellman protocol!

Group action on isogeny graphs



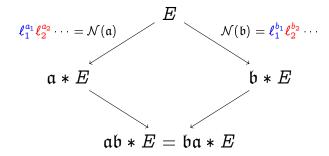
— ℓ_1 -isogenies

- There is a group action of the ideal class group Cl(O) on the set of ordinary curves with complex multiplication by O.
- Its Schreier graph is an isogeny graph (and an expander if we take enough generators)

Key exchange in graphs of ordinary isogenies³ (circa 2006) Parameters:

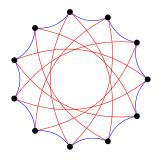
- E/\mathbb{F}_p ordinary elliptic curve with Frobenius endomorphism π ,
- primes ℓ_1, ℓ_2, \ldots such that $\left(\frac{D_{\pi}}{\ell_i}\right) = 1$.

• A *direction* for each ℓ_i (i.e. a choice of a root of $\pi^2 - t\pi + q \mod \ell$). Secret data: Random walks $\mathfrak{a}, \mathfrak{b} \in Cl(\mathcal{O})$ in the isogeny graph.



³Couveignes 2006; Rostovtsev and Stolbunov 2006.

CRS key exchange



Key generation: compose small degree isogenies (Isogeny Computation Problem) polynomial in the length of the random walk.

Attack: Isogeny Walk Problem polynomial in the degree, exponential in the length.

Open problem: Make this thing practical!

Luca De Feo (U Paris Saclay)

Security of CRS

Size of the graph: $h(\mathcal{O}) \sim \sqrt{p}$, Key space size: Exponential in the number of primes ℓ_1, ℓ_2, \dots Meet in the middle attack: $O(\sqrt[4]{p})$.

The Abelian Hidden Shift Problem

Let G be a group and S be a set. Given two oracles $f_0, f_1 : G \to S$ such that $f_0(g) = f_1(gs)$ for some $s \in G$, find s.

$\textit{Ordinary isogeny walk} \rightarrow \textit{Hidden shift}$

To find a secret isogeny walk $E_0
ightarrow E_1$, set

$$egin{array}{lll} f_0:\operatorname{Cl}(\mathcal{O}) o V & f_1:\operatorname{Cl}(\mathcal{O}) o V \ \mathfrak{a}\mapsto\mathfrak{a}\ast E_0 & \mathfrak{a}\mapsto\mathfrak{a}\ast E_1 \end{array}$$

Then the hidden shift is \mathfrak{s} such that $\mathfrak{s} * E_0 = E_1$.

Luca De Feo (U Paris Saclay)

Quantum attack on CRS⁴

• $L_p(1/2, \sqrt{3}/2)$ classical algorithm for evaluating f_0, f_1 .

② Hidden Shift Problem \rightarrow Dihedral Hidden Subgroup Problem.

Quantum algorithms for dihedral HSP

Kuperberg^{*a*}: $2^{O(\sqrt{\log |G|})}$ quantum time, space and query complexity. Regev^{*b*}: $L_{|G|}(\frac{1}{2}, \sqrt{2})$ quantum time and query complexity, poly(log(|G|) quantum space.

^{*a*}Kuperberg 2005. ^{*b*}Regev 2004.

⁴Childs, Jao, and Soukharev 2010.

Key exchange with supersingular curves (2011)

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

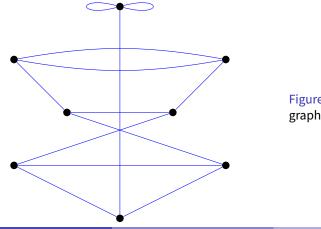


Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Key exchange with supersingular curves (2011)

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

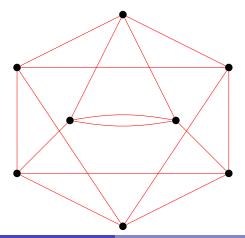


Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Key exchange with supersingular curves (2011)

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

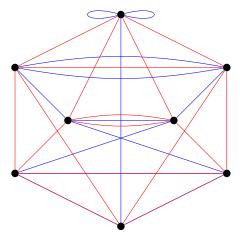
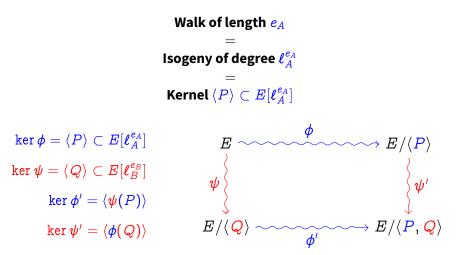


Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Key exchange with supersingular curves

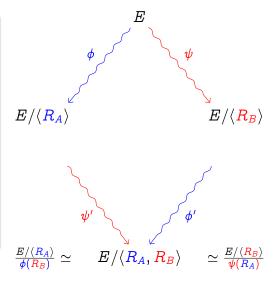
- Fix small primes ℓ_A , ℓ_B ;
- No canonical labeling of the ℓ_A and ℓ_B -isogeny graphs; however...



Supersingular Isogeny Diffie-Hellman⁵

Parameters:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$
- $E[\ell_B^b] = \langle P_B, Q_B \rangle.$ Secret data:
 - $R_A = m_A P_A + n_A Q_A$,
 - $R_B = m_B P_B + n_B Q_B$,



⁵Jao and De Feo 2011; De Feo, Jao, and Plût 2014.

Luca De Feo (U Paris Saclay)

Isogeny graphs in cryptography

Supersingular Isogeny Diffie-Hellman⁵

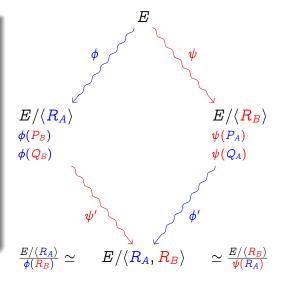
Parameters:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$

• $E[\ell_B^b] = \langle P_B, Q_B \rangle.$ Secret data:

• $R_A = m_A P_A + n_A Q_A$,

•
$$R_B = m_B P_B + n_B Q_B$$
,



⁵Jao and De Feo 2011; De Feo, Jao, and Plût 2014.

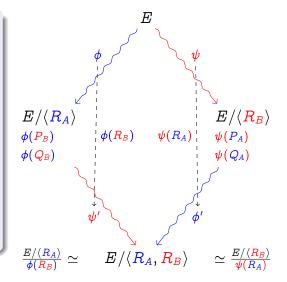
Luca De Feo (U Paris Saclay)

Isogeny graphs in cryptography

Supersingular Isogeny Diffie-Hellman⁵

Parameters:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$
- $E[\ell_B^b] = \langle P_B, Q_B \rangle.$ Secret data:
 - $R_A = m_A P_A + n_A Q_A$,
 - $R_B = m_B P_B + n_B Q_B$,



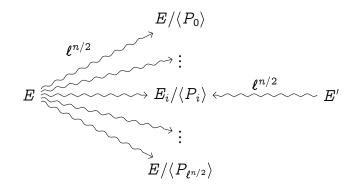
⁵Jao and De Feo 2011; De Feo, Jao, and Plût 2014.

Luca De Feo (U Paris Saclay)

Isogeny graphs in cryptography

Generic attacks

Problem: Given E, E', isogenous of degree ℓ^n , find $\phi: E \to E'$.



- With high probability ϕ is the unique collision (or *claw*) $O(\ell^{n/2})$.
- A quantum claw finding⁶ algorithm solves the problem in $O(\ell^{n/3})$.

⁶Tani 2009.

Security

The SIDH problem

Given *E*, Alice's public data $E/\langle R_A \rangle$, $\phi(P_B)$, $\phi(Q_B)$, and Bob's public data $E/\langle R_B \rangle$, $\psi(P_A)$, $\psi(Q_A)$, find the shared secret $E/\langle R_A, R_B \rangle$.

Under the SIDH assumption:

- The SIDH key exchange protocol is session-key secure.
- The derived El Gamal-type PKE is CPA secure.

Reductions

- SIDH \rightarrow Isogeny Walk Problem;
- SIDH \rightarrow Computing the endomorphism rings of E and $E/\langle R_A \rangle$.^{*a*}

^{*a*}Kohel, K. Lauter, Petit, and Tignol 2014; Galbraith, Petit, Shani, and Ti 2016.

Chosen ciphertext attack⁷

For simplicity, assume Alice's prime is $\ell = 2$.

Evil Bob

- Alice has a long-term secret $R = mP + nQ \in E[2^e]$;
- Bob produces an ephemeral secret ψ;
- Bob sends to Alice $\psi(P), \psi(Q + 2^{e-1}P);$
- Alice computes the shared secret correctly iff

R = mP + nQ $= mP + nQ + n2^{e-1}P,$

i.e., iff *n* is even;

- Bob learns one bit of the secret key by checking that Alice gets the right shared secret.
- Bob repeats the queries in a similar fashion, learning one bit per query.
- Detecting Bob's faulty key seems to be as hard as breaking SIDH.

⁷Galbraith, Petit, Shani, and Ti 2016.

Luca De Feo (U Paris Saclay)

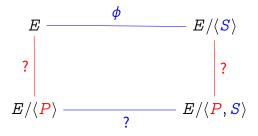
Isogeny graphs in cryptograph

Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.

$$E \longrightarrow E/\langle S \rangle$$

⁸De Feo, Jao, and Plût 2014.

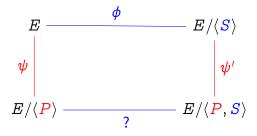
Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.



- Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- 2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;

⁸De Feo, Jao, and Plût 2014.

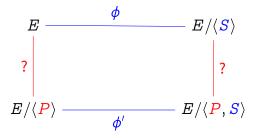
Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.



- **)** Choose a random point $P \in E[{m\ell}_B^{e_B}]$, compute the diagram;
- 2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- Ite verifier asks one of the two questions:
 - Reveal the degree $\ell_B^{e_B}$ isogenies;

⁸De Feo, Jao, and Plût 2014.

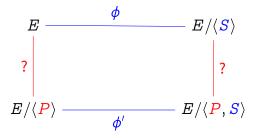
Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.



- **①** Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- 2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- The verifier asks one of the two questions:
 - Reveal the degree $\ell_B^{e_B}$ isogenies;
 - Reveal the bottom isogeny.

⁸De Feo, Jao, and Plût 2014.

Secret: knowledge of the kernel of a degree $\ell_A^{e_A}$ isogeny from *E* to $E/\langle S \rangle$.



- Choose a random point $P \in E[\ell_B^{e_B}]$, compute the diagram;
- 2 Publish the curves $E/\langle P \rangle$ and $E/\langle P, S \rangle$;
- Ite verifier asks one of the two questions:
 - Reveal the degree $\ell_B^{e_B}$ isogenies;
 - Reveal the bottom isogeny.

Can derive Fiat-Shamir signatures: secure under SIDH...but very slow!

⁸De Feo, Jao, and Plût 2014.

SIKE: Supersingular Isogeny Key Encapsulation

• Submission to the NIST PQ competition:

SIKE.PKE: El Gamal-type system with IND-CPA security proof, SIKE.KEM: generically transformed system with IND-CCA security proof.

- Security levels 1, 3 and 5.
- Smallest communication complexity among all proposals in each level.
- Slowest among all benchmarked proposals in each level.
- A team of 14 submitters, from 8 universities and companies.
- Download the package here.

	p	,	q. security	speed	comm.
	$2^{250}3^{159} - 1$	126 bits	84 bits	10ms	0.4KB
	$2^{372}3^{239} - 1$	188 bits	125 bits	30ms	0.6KB
SIKEp964	$2^{486}3^{301} - 1$	241 bits	161 bits		0.8KB

Parameter choices

For efficiency: $p = 2^a 3^b - 1$, with *a* even; For security:

$$a \sim (\log_2 3)b \ge \begin{cases} 2 \times \text{classical security parameter,} \\ 3 \times \text{quantum security parameter;} \end{cases}$$

For verifiability:

- Special starting curve E_0 : $y^2 = x^3 + x$;
- *P_A*, *Q_A*, *P_B*, *Q_B* chosen as the lexicographically first points satisfying the necessary conditions.

Implementation: finite field

Arithmetic in \mathbb{F}_p

- $p = 2^a 3^b 1$ lends itself to optimizations:
 - Adapted Comba-based Montgomery reduction^a,
 - Adapted Barret reduction^b;
 - Assembly optimized.

^aCostello, Longa, and Naehrig 2016.

^bKarmakar, Roy, Vercauteren, and Verbauwhede 2016.

Arithmetic in \mathbb{F}_{p^2}

Because $p = -1 \mod 4$, then -1 is not a quadratic residue in \mathbb{F}_p . We define $\mathbb{F}_{p^2} = \mathbb{F}_p[i] = \mathbb{F}_p[X]/(X^2 + 1)$.

- Arithmetic similar to $\mathbb{Q}[i]$;
- Karatsuba-like formulas for multiplication and squaring;
- Inversion only requires one inversion in 𝔽_p;
- Optimizations similar to pairing-base crypto (e.g., BN254).

Implementation: curves

Montgomery curves

Not a Weierstrass equation:

$$by^2 = x^3 + ax^2 + x$$

- Only possible for curves with a 4-torsion point (we're lucky);
- Very efficient arithmetic in *XZ*-coordinates: identify ±*P* by dropping the *Y*-coordinate

Doubling:

$$[2](X:\,\cdot\,:Z)=((X^2-Z^2)^2:\,\cdot\,:4XZ(X^2+aXZ+Z^2))$$

Tripling:

 $[3](X: \cdot: Z) = \left(X(X^4 - 6X^2Z^2 - 4aXZ^3 - 3Z^4): \cdot: Z(3X^4 + 4aX^3Z + 6X^2Z^3 - Z^4)\right)$

Implementation: curves

Computing mP + nQ

- Observe that mP + nQ and P + (n/m)Q generate the same isogeny kernel;
- Constant time Montgomery ladder tailored^{*a*} to P + cQ.
- For simplicity and constant-time sampling, SIKE secret keys are restricted to P + cQ with $c \in [0, ..., 2^x 1]$.

^aFaz-Hernández, López, Ochoa-Jiménez, and Rodríguez-Henríquez 2017.

Input
$$P = (X_P : Z_P), Q = (X_Q : Z_Q), P - Q = (X_{P-Q} : Z_{P-Q}),$$

a scalar c;
Output $P + cQ$.
Set $R_0 = Q, \quad R_1 = P, \quad R_2 = Q - P$
For *i* from 0 to $\lfloor \log_2 c \rfloor$:
 \models if $c_i = 0$, let $R_0, R_1 = 2R_0, \quad R_0 + R_1;$
 \models if $c_i = 1$, let $R_0, R_2 = 2R_0, \quad R_0 + R_2;$
Return R_1 .

Implementation: isogenies

Vélu's formulas

Given a group $G \subset E$, the isogeny $\phi: E
ightarrow E/G$ is defined by:

$$\phi(P)=\left(x(P)+\sum_{Q\in G\setminus\{\mathcal{O}\}}x(P+Q)-x(Q),\ y(P)+\sum_{Q\in G\setminus\{\mathcal{O}\}}y(P+Q)-y(Q)
ight)$$

3-isogenies of Montgomery curves

Let $P = (X_3 : Z_3)$ be a point of order 3 on $by^2 = x^3 + ax^2 + x$. The curve $E/\langle P \rangle$ has equation $by^2 = x^3 + a'x^2 + x$ where

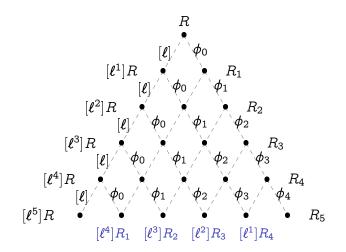
$$a' = (aX_3Z_3 + 6(Z_3^2 - X_3^2))X_3/Z_3^3.$$

It is defined by the map

$$\phi(X:Z) = (X(X_3X - Z_3Z)^2 : Z(Z_3X - X_3Z)^2).$$

Similar formula for 4-isogenies.

Implementation: isogeny walks ord(R) = ℓ^e and $\phi = \phi_0 \circ \phi_1 \circ \cdots \circ \phi_{e-1}$, each of degree ℓ



For each *i*, one needs to compute $[\ell^{e-i}]R_i$ in order to compute ϕ_i .

Luca De Feo (U Paris Saclay)

Isogeny graphs in cryptograph

Implementation: isogeny walks

Figure: The seven well formed strategies for e = 4.

- Right edges are *ℓ*-isogeny evaluation;
- Left edges are multiplications by ℓ (about twice as expensive);
- The best strategy can be precomputed offline and hardcoded.
- Evaluation is done in constant time!
- Pre-computed optimized strategies are given in the SIKE submission document.

Example

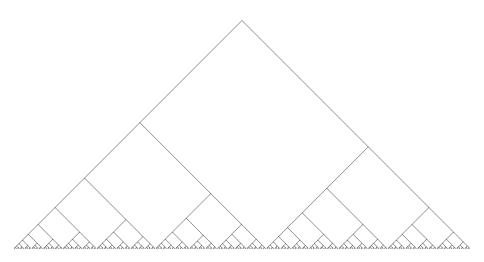


Figure: Optimal strategy for e = 512, $\ell = 2$.

Implementation: constant time

- Secret key sampling in constant time by restricting key space;
- P + cQ in constant time via Montgomery ladder;
- Isogeny walk in constant time via any strategy.

Finite field operations in constant time

Only problem is to avoid inversions as much as possible, but Vélu's formulas require one inversion per curve on the walk. **Solution**^{*a*}: projectivize curve equations

$$E : CBy^2 = Cx^3 + Ax^2 + Cx.$$

- Slightly increases operation counts of formulas;
- Delays all inversions to the very end;
- Only the value (A : C) is needed in computations. Then:

$$j(E) = rac{256(A^2-3C^2)}{C^4(A^2-4C^2)}.$$

^{*a*}Costello, Longa, and Naehrig 2016.

Summary

Public parameters:

- $p = 2^a 3^b 1$,
- Staring curve $E : y^2 = x^3 + x$,
- Torsion generators

$$egin{aligned} P_A &= (X_{a1}:Z_{a1}), \quad Q_A &= (X_{a2}:Z_{a2}), \quad P_A - Q_A &= (X_{a3}:Z_{a3}), \ P_B &= (X_{b1}:Z_{b1}), \quad Q_B &= (X_{b2}:Z_{b2}), \quad P_B - Q_B &= (X_{b3}:Z_{b3}). \end{aligned}$$

Secret keys:

- $R_A=P_A+cQ_A$ with $c\in [0,\ldots,2^a-1]$,
- $R_B = P_A + cQ_A$ with $c \in [0, \ldots, 2^{b \lfloor \log_2 3 \rfloor} 1]$.

Public keys (curve equation can be interpolated from three points):

•
$$\phi(P_B), \phi(Q_B), \phi(P_B - Q_B),$$

•
$$\psi(P_A), \psi(Q_A), \psi(P_A - Q_A).$$

Shared secret:

•
$$j = 256(A^2 - 3C^2)/C^4(A^2 - 4C^2).$$

References I

Pizer, Arnold K. (1990).

"Ramanujan graphs and Hecke operators." In: Bull. Amer. Math. Soc. (N.S.) 23.1.

- (1998).
 - "Ramanujan graphs."

In: Computational perspectives on number theory (Chicago, IL, 1995). Vol. 7. AMS/IP Stud. Adv. Math.

Providence, RI: Amer. Math. Soc.

Jao, David, Stephen D. Miller, and Ramarathnam Venkatesan (June 2009).

"Expander graphs based on GRH with an application to elliptic curve cryptography."

In: Journal of Number Theory 129.6,

Pp. 1491–1504.

References II

- Teske, Edlyn (Jan. 2006).
 "An Elliptic Curve Trapdoor System." In: Journal of Cryptology 19.1, Pp. 115–133.
- Galbraith, Steven D. (1999).

"Constructing Isogenies between Elliptic Curves Over Finite Fields." In: LMS Journal of Computation and Mathematics 2, Pp. 118–138.

Galbraith, Steven D., Florian Hess, and Nigel P. Smart (2002). "Extending the GHS Weil descent attack." In: Advances in cryptology—EUROCRYPT 2002 (Amsterdam). Vol. 2332. Lecture Notes in Comput. Sci. Berlin: Springer, Pp. 29–44.

References III

- Bisson, Gaetan and Andrew V. Sutherland (June 2011).
 "A low-memory algorithm for finding short product representations in finite groups."
 In: Designs, Codes and Cryptography 63.1,
 Pp. 1–13.
- Charles, Denis X., Kristin E. Lauter, and Eyal Z. Goren (Jan. 2009).
 "Cryptographic Hash Functions from Expander Graphs."
 In: Journal of Cryptology 22.1,
 Pp. 93–113.
- Doliskani, Javad, Geovandro C. C. F. Pereira, and Paulo S. L. M. Barreto (2017).
 Faster Cryptographic Hash Function From Supersingular Isogeny Graphs.
 Cryptology ePrint Archive, Report 2017/1202.
 https://eprint.iacr.org/2017/1202.

References IV

- Couveignes, Jean-Marc (2006). Hard Homogeneous Spaces.
- Rostovtsev, Alexander and Anton Stolbunov (2006). Public-key cryptosystem based on isogenies. http://eprint.iacr.org/2006/145/.
- Kuperberg, Greg (2005).
 "A subexponential-time quantum algorithm for the dihedral hidden subgroup problem."
 In: SIAM J. Comput. 35.1,
 Pp. 170–188.
 eprint: quant-ph/0302112.
- Regev, Oded (June 2004).
 A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space.
 arXiv: quant-ph/0406151.

References V

- Childs, Andrew M., David Jao, and Vladimir Soukharev (Dec. 2010). "Constructing elliptic curve isogenies in quantum subexponential time."
- Jao, David and Luca De Feo (2011).

"Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies."

In: Post-Quantum Cryptography.

Ed. by Bo-Yin Yang.

Vol. 7071.

Lecture Notes in Computer Science.

Taipei, Taiwan: Springer Berlin / Heidelberg.

Chap. 2, pp. 19–34.

References VI

- De Feo, Luca, David Jao, and Jérôme Plût (2014).
 "Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies."
 In: Journal of Mathematical Cryptology 8.3,
 Pp. 209–247.
- Tani, Seiichiro (2009).
 "Claw finding algorithms using quantum walk." In: Theoretical Computer Science 410.50, Pp. 5285–5297.

 Kohel, David, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol (2014).
 "On the quaternion-isogeny path problem."
 In: LMS Journal of Computation and Mathematics 17.A, Pp. 418–432.

References VII

Galbraith, Steven D., Christophe Petit, Barak Shani, and Yan Bo Ti (2016).

"On the security of supersingular isogeny cryptosystems." In: Advances in Cryptology–ASIACRYPT 2016: 22nd International Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22. Springer,

Pp. 63–91.

 Costello, Craig, Patrick Longa, and Michael Naehrig (2016).
 "Efficient Algorithms for Supersingular Isogeny Diffie-Hellman."
 In: Advances in Cryptology – CRYPTO 2016: 36th Annual International Cryptology Conference.
 Ed. by Matthew Robshaw and Jonathan Katz.
 Springer Berlin Heidelberg,
 Pp. 572–601.

References VIII

- Karmakar, Angshuman, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede (2016).
 "Efficient Finite Field Multiplication for Isogeny Based Post Quantum Cryptography."
 In: Proceedings of WAIFI 2016.
- Faz-Hernández, Armando, Julio López, Eduardo Ochoa-Jiménez, and Francisco Rodríguez-Henríquez (2017).
 A Faster Software Implementation of the Supersingular Isogeny Diffie-Hellman Key Exchange Protocol.
 Cryptology ePrint Archive, Report 2017/1015.
 http://eprint.iacr.org/2017/1015.