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1 Isogeny graphs
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Endomorphism rings
Ordinary graphs
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Key exchange
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Elliptic curves

Let k be a field of
characteristic 6= 2; 3.
An elliptic curve defined over
k is the locus in the projective
space P2(�k) of an equation

Y 2Z = X 3 + aXZ 2 + bZ 3;

where a ; b 2 k and
4a3 + 27b2 6= 0.

O = (0 : 1 : 0) is the
point at infinity;
y2 = x 3 + ax + b is the
a�ine Weierstrass
equation.
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The group law

Bezout’s theorem
Every line cutsE in exactly
three points (counted with
multiplicity).

Define a group law such that
any three colinear points add
up to zero.

The law is algebraic
(it has formulas);
The law is commutative;
O is the group identity;
Opposite points have the
same x -value.

P

Q

R

P +Q
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Why should I care? (Di�ie–Hellman key exchange)

Goal: Alice and Bob have never met before. They are chatting over a
public channel, and want to agree on a shared secret to start a
private conversation.

Setup: They agree on a (large) cyclic groupG = hgi of (prime) order
q .

Alice Bob

pick random a 2 Z=qZ
computeA = ga

pick random b 2 Z=qZ
computeB = gb

A

B

Shared secret isBa = gab = Ab
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Brief history of DH key exchange

1976 Di�ie & Hellman publish New directions in cryptography,
suggest usingG = F�p .

1978 Pollard publishes his discrete logarithm algorithm (O(
p
#G)

complexity).
1980 Miller and Koblitz independently suggest using elliptic curves

G = E(Fp).
1994 Shor publishes his quantum polynomial time discrete

logarithm / factoring algorithm.
2005 NSA standardizes elliptic curve key agreement (ECDH) and

signatures ECDSA.
2017 � 70% of web tra�ic is secured by ECDH and/or ECDSA.
2017 NIST launches post-quantum competition, says “not to bother

moving to elliptic curves, if you haven’t yet”.
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Why should I care? (cont’d)

But, also:
Elliptic Curve Factoring Method (Lenstra ’85);
Elliptic Curve Primality Proving (Atkin, Morain ’86-’93);
E�icient normal bases for finite fields (Couveignes, Lercier ’10);
. . .

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Mar 18, 2019 —Maths of PKC 7 / 93



What are elliptic curves?

For mathematicians
The smooth projective curves of genus 1 (with a distinguished point);
The simplest abelian varieties (dimension 1);
Finitely generated abelian groups of mysterious free rank (aka BSD
conjecture);
What you use to make examples.

For cryptographers
Finite abelian groups (o�en cyclic);
Easy to compute the order;
“2-dimensional” generalizations of �k (the roots of unity of k ). . .
. . .with bilinear maps (aka pairings)!
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Isomorphisms

Isomorphisms
The only invertible algebraic maps between elliptic curves are of the form

(x ; y) 7! (u2x ;u3y)

for some u 2 �k .
They are group isomorphisms.

j -Invariant
LetE : y2 = x 3 + ax + b, its j -invariant is

j (E) = 1728
4a3

4a3 + 27b2 :

Two elliptic curvesE ;E 0 are isomorphic if and only if j (E) = j (E 0).
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Group structure
Torsion structure
LetE be defined over an algebraically closed field �k of characteristic p.

E [m ] ' Z=mZ� Z=mZ if p - m ,

Z=peZ ordinary case,
E [pe ] '

(
fOg supersingular case.

Finite fields (Hasse’s theorem)
LetE be defined over a finite field Fq , then

j#E(Fq)� q � 1j � 2
p

q :

In particular, there exist integers n1 and n2j gcd(n1; q � 1) such that

E(Fq) ' Z=n1Z� Z=n2Z:
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What is scalar multiplication?

[n ] : P 7! P + P + � � �+ P| {z }
n times

AmapE ! E ,
a groupmorphism,
with finite kernel
(the torsion groupE [n ] ' (Z=nZ)2),
surjective (in the algebraic closure),
given by rational maps of degree n2.

(Separable) isogenies, finite subgroups:

0 �! H �! E
��! E 0 ! 0

The kernelH determines the image curveE 0 up to isomorphism

E=H def
= E 0:
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Isogenies: an example over F11

E : y2 = x 3 + x E 0 : y2 = x 3 � 4x

�(x ; y) =

 
x 2 + 1

x
; y

x 2 � 1
x 2

!

Kernel generator in red.
This is a degree 2map.
Analogous to x 7! x 2 in F�q .
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Isogeny properties
Let � : E ! E 0 be an isogeny defined over a field k of characteristic p.

k(E) is the field of all rational functions fromE to k ;
��k(E 0) is the subfield of k(E) defined as

��k(E 0) = ff � � j f 2 k(E 0)g:

Degree, separability
1 The degree of � is deg � = [k(E) : ��k(E 0)]. It is always finite.
2 � is said to be separable, inseparable, or purely inseparable if the
extension of function fields is.

3 If � is separable, then deg � = #ker�.
4 If � is purely inseparable, then ker� = fOg and deg � is a power of p.
5 Any isogeny can be decomposed as a product of a separable and a
purely inseparable isogeny.
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The dual isogeny

Let � : E ! E 0 be an isogeny of degreem . There is a unique isogeny
�̂ : E 0 ! E such that

�̂ � � = [m ]E ; � � �̂ = [m ]E 0 :

�̂ is called the dual isogeny of �; it has the following properties:
1 �̂ is defined over k if and only if � is;
2 [ � � = �̂ �  ̂ for any isogeny : E 0 ! E 00;
3 \ + � =  ̂ + �̂ for any isogeny : E ! E 0;
4 deg � = deg �̂;
5 ^̂� = �.
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Isogeny graphs
We look at the graph of elliptic curves with
isogenies up to isomorphism. We say two
isogenies �; �0 are isomorphic if:

E E 0

E 0

�

�0

e

Example: Finite field, ordinary case, graph of isogenies of degree 3.
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What do isogeny graphs look like?

Torsion subgroups (` prime)
In an algebraically closed field:

E [`] = hP ;Qi ' (Z=`Z)2

+
There are exactly `+ 1 cyclic
subgroupsH � E of order `:

hP +Qi; hP + 2Qi; : : : ; hPi; hQi

+
There are exactly `+ 1 distinct
isogenies of degree `. (non-CM) 2-isogeny graph overC
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What happens over a finite field Fp?

Rational isogenies (` 6= p)
In the algebraic closure �Fp

E [`] = hP ;Qi ' (Z=`Z)2

However, an isogeny is defined over Fp only if its kernel is Galois invariant.

Enter the Frobenius map

� : E �! E
(x ; y) 7�! (x p ; yp)

E is seen here as a curve over �Fp .

The Frobenius action onE [`]

�(P) =

�(Q) =

aP + bQ

cP + dQ

 !
� : mod `

We identify �jE [`] to a conjugacy
class inGL(Z=`Z).
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What happens over a finite field Fp?

Galois invariant subgroups ofE [`]
=

eigenspaces of � 2 GL(Z=`Z)
=

rational isogenies of degree `

Howmany Galois invariant subgroups?
�jE [`] � � � 0

0 �
� ! `+ 1 isogenies

�jE [`] �
�
� 0
0 �

�
with � 6= � ! two isogenies

�jE [`] � � � �
0 �
� ! one isogeny

�jE [`] is not diagonalizable overZ=`Z ! no isogeny
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Weil pairing
Let (N ; p) = 1, fix any basisE [N ] = hR;Si. For any pointsP ;Q 2 E [N ]

P = aR + bS
Q = cR + dS

the form detN (P ;Q) = det
� a b

c d
�
= ad � bc 2 Z=NZ

is bilinear, non-degenerate, and independent from the choice of basis.

Theorem
LetE=Fq be a curve, there exists a Galois invariant bilinear map

eN : E [N ]� E [N ] �! �N � �Fq ;

called the Weil pairing of orderN , and a primitiveN -th root of unity � 2 �Fq
such that

eN (P ;Q) = �detN (P ;Q):

The degree k of the smallest extension such that � 2 Fqk is called the
embedding degree of the pairing.
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Weil pairing and isogenies

Note
The Weil pairing is Galois invariant , det(�jE [N ]) = q .

Theorem
Let � : E ! E 0 be an isogeny and �̂ : E 0 ! E its dual.
Let eN be the Weil pairing ofE and e 0N that ofE 0. Then, for

eN (P ; �̂(Q)) = e 0N (�(P);Q);

for anyP 2 E [N ] andQ 2 E 0[N ].

Corollary

e 0N (�(P); �(Q)) = eN (P ;Q)deg �:
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From local to global

Theorem (Hasse)
LetE be defined over a finite field Fq . Its Frobenius map � satisfies a
quadratic equation

�2 � t� + q = 0

for some jt j � 2
p

q , called the trace of �. The trace t is coprime to q if and
only ifE is ordinary.

Endomorphisms
An isogenyE ! E is also called an endomorphism. Examples:

scalar multiplication [n ],
Frobenius map �.

With addition and composition, the endomorphisms form a ringEnd(E).
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The endomorphism ring

Theorem (Deuring)
LetE be an ordinary elliptic curve defined over a finite field Fq .
Let � be its Frobenius endomorphism, andD� = t2 � 4q < 0 the
discriminant of its minimal polynomial.
ThenEnd(E) is isomorphic to an orderO of the quadratic imaginary field
Q(
p

D�).a

aAn order is a subring that is aZ-module of rank 2 (equiv., a 2-dimensional
R-lattice).

In this case, we say thatE has complex multiplication (CM) byO.
Theorem (Serre-Tate)
CM elliptic curvesE ;E 0 are isogenous i�End(E)
Q ' End(E 0)
Q.
Corollary: E=Fp andE 0=Fp are isogenous over Fp i�#E(Fp) = #E 0(Fp).
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Endomorphism rings of ordinary curves

Classifying quadratic orders
LetK be a quadratic number field, and letOK be its ring of integers.

Any orderO � K can be written asO = Z+ fOK for an integer f ,
called the conductor ofO, denoted by [OK : O].
IfDK is the discriminant ofK , the discriminant ofO is f 2DK .
IfO;O0 are two orders with discriminantsD ;D 0, thenO � O0 i�D 0jD .

OK

Z+ 2OK Z+ 3OK Z+ 5OK

Z+ 6OK Z+ 10OK Z+ 15OK

Z[�] ' Z+ 30OK
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Volcanology (Kohel 1996)
LetE ;E 0 be curves with respective
endomorphism ringsO;O0 � K .
Let � : E ! E 0 be an isogeny of
prime degree `, then:

ifO = O0, � is horizontal;
if [O0 : O] = `, � is ascending;
if [O : O0] = `, � is descending.

End(E)

OK

Z[�]

Ordinary isogeny volcano of degree ` = 3.
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Volcanology (Kohel 1996)

LetE be ordinary,
End(E) � K .

OK : maximal order ofK ,
DK : discriminant ofK .

Height= v`([OK : Z[�]]).

How large is the crater?

�DK
`

�
= �1

�DK
`

�
= 0

�DK
`

�
= +1

Horizontal Ascending Descending
` - [OK : O]] ` - [O : Z[�]] 1 +

�
DK
`

�
` - [OK : O]] ` j [O : Z[�]] 1 +

�
DK
`

�
`�

�
DK
`

�
` j [OK : O]] ` j [O : Z[�]] 1 `
` j [OK : O]] ` - [O : Z[�]] 1
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Height= v`([OK : Z[�]]).

How large is the crater?

�DK
`

�
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�DK
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�
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�DK
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�
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How large is the crater of a volcano?

LetEnd(E) = O � Q(p�D). Define
I(O), the group of invertible fractional ideals,
P(O), the group of principal ideals,

The class group
The class group ofO is

Cl(O) = I(O)=P(O):

It is a finite abelian group.
Its order h(O) is called the class number ofO.
It arises as the Galois group of an abelian extension ofQ(

p�D).
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Complex multiplication
The a-torsion

Let a � O be an (integral invertible) ideal ofO;
LetE [a] be the subgroup ofE annihilated by a:

E [a] = fP 2 E j �(P) = 0 for all � 2 ag;
Let � : E ! Ea, whereEa = E=E [a].

ThenEnd(Ea) = O (i.e., � is horizontal).

Theorem (Complex multiplication)
The action on the set of elliptic curves with complex multiplication byO
defined by a � j (E) = j (Ea) factors throughCl(O), is faithful and transitive.

Corollary

LetEnd(E) have discriminantD . Assume that
�

D
`

�
= 1, thenE is on a

crater of sizeN of an `-volcano, andN jh(End(E))
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Complex multiplication graphs

E1

E2

E3
E4

E5

E6

E7

E8
E9

E10

E11

E12

Vertices are elliptic
curves with complex
multiplication by OK
(i.e., End(E) ' OK �
Q(
p�D)).

Edges are horizontal
isogenies of bounded
prime degree.

degree 2

degree 3

degree 5

Isomorphic to a Cayley
graph ofCl(OK ).
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Supersingular endomorphisms

Recall, a curveE over a field Fq of characteristic p is supersingular i�

�2 � t� + q = 0

with t = 0 mod p.

Case: t = 0 ) D� = �4q
Only possibility forE=Fp ,
E=Fp has CM by an order ofQ(

p�p), similar to the ordinary case.

Case: t = �2
p

q ) D� = 0

General case forE=Fq , when q is an even power.
� = �pq , hence no complex multiplication.

We will ignore marginal cases: t = �pq ;�p2q ;�p3q .
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Supersingular complex multiplication
LetE=Fp be a supersingular curve, then �2 = �p, and

� =
�p�p 0

0 �p�p

�
mod `

for any ` s.t.
��p
`

�
= 1.

Theorem (Delfs and Galbraith 2016)
LetEndFp (E) denote the ring of Fp-rational endomorphisms ofE . Then

Z[�] � EndFp (E) � Q(p�p):

Orders ofQ(
p�p)

If p = 1 mod 4, thenZ[�] is the maximal order.
If p = �1 mod 4, thenZ[�+1

2 ] is the maximal order,
and [Z[�+1

2 ] : Z[�]] = 2.
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Supersingular CM graphs

2-volcanoes, p = �1 mod 4

Z[�+1
2 ]

Z[�]

2-graphs, p = 1 mod 4

Z[�]

All other `-graphs are cycles of horizontal isogenies i�
��p
`

�
= 1.
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The full endomorphism ring

Theorem (Deuring)
LetE be a supersingular elliptic curve, then

E is isomorphic to a curve defined over Fp2 ;
Every isogeny ofE is defined over Fp2 ;
Every endomorphism ofE is defined over Fp2 ;
End(E) is isomorphic to a maximal order in a quaternion algebra
ramified at p and1.

In particular:
IfE is defined over Fp , thenEndFp (E) is strictly contained inEnd(E).
Some endomorphisms do not commute!

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Mar 18, 2019 —Maths of PKC 32 / 93



An example

The curve of j -invariant 1728

E : y2 = x 3 + x

is supersingular over Fp i� p = �1 mod 4.

Endomorphisms
End(E) = Zh�; �i, with:

� the Frobenius endomorphism, s.t. �2 = �p;
� the map

�(x ; y) = (�x ; iy);

where i 2 Fp2 is a 4-th root of unity. Clearly, �2 = �1.
And �� = ���.
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Class group action party

j = 1728

Cl(�4p)

Cl(�4)
j = 0Cl(�3)

Cl(�23)

Cl(�79)
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Quaternion algebra?! WTF?2

The quaternion algebraBp;1 is:
A 4-dimensionalQ-vector space with basis (1; i ; j ; k).
A non-commutative division algebra1 Bp;1 = Qhi ; j iwith the
relations:

i2 = a ; j 2 = �p; ij = �ji = k ;

for some a < 0 (depending on p).
All elements ofBp;1 are quadratic algebraic numbers.
Bp;1 
Q` 'M2�2(Q`) for all ` 6= p.
I.e., endomorphisms restricted toE [`e ] are just 2� 2matrices mod`e .
Bp;1 
 R is isomorphic to Hamilton’s quaternions.
Bp;1 
Qp is a division algebra.

1All elements have inverses.
2What The Field?
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Supersingular graphs

Quaternion algebras have many
maximal orders.
For every maximal order type ofBp;1
there are 1 or 2 curves over Fp2 having
endomorphism ring isomorphic to it.
There is a unique isogeny class of
supersingular curves over �Fp of size
� p=12.
Le� ideals act on the set of maximal
orders like isogenies.
The graph of `-isogenies is
(`+ 1)-regular.

Figure: 3-isogeny graph on F972 .
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Graphs lexicon

Degree: Number of (outgoing/ingoing) edges.
k -regular: All vertices have degree k .
Connected: There is a path between any two vertices.
Distance: The length of the shortest path between two vertices.
Diamater: The longest distance between two vertices.

�1 � � � � � �n : The (ordered) eigenvalues of the adjacency matrix.
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Expander graphs

Proposition
IfG is a k -regular graph, its largest and smallest eigenvalues satisfy

k = �1 � �n � �k :

Expander families
An infinite family of connected k -regular graphs on n vertices is an
expander family if there exists an � > 0 such that all non-trivial eigenvalues
satisfy j�j � (1� �)k for n large enough.

Expander graphs have short diameter (O(logn));
Randomwalks mix rapidly (a�erO(logn) steps, the induced
distribution on the vertices is close to uniform).
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Expander graphs from isogenies

Theorem (Pizer 1990, 1998)
Let ` be fixed. The family of graphs of supersingular curves over Fp2 with
`-isogenies, as p !1, is an expander familya.

aEven better, it has the Ramanujan property.

Theorem (Jao, Miller, and Venkatesan 2009)
LetO � Q(p�D) be an order in a quadratic imaginary field. The graphs of
all curves over Fq with complex multiplication byO, with isogenies of prime
degree boundeda by (log q)2+� , are expanders.

aMay contain traces of GRH.
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Overview

1 Isogeny graphs
Elliptic Curves
Isogenies
Isogeny graphs
Endomorphism rings
Ordinary graphs
Supersingular graphs

2 Cryptography
Isogeny walks and Hash functions
Pairing verification and Verifiable Delay Functions
Key exchange
Open Problems
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History of isogeny-based cryptography
1996 Couveignes introduces the Hard Homogeneous Spaces (HHS).

His work stays unpublished for 10 years.
2006 Rostovtsev & Stolbunov independently rediscover Couveignes

ideas, suggest isogeny-based Di�ie–Hellman as a
quantum-resistant primitive.

2007 Charles, Goren & Lauter propose supersingular 2-isogeny
graphs as a foundation for a “provably secure” hash function.

2011-2012 D., Jao & Plût introduce SIDH, an e�icient post-quantum key
exchange inspired by Couveignes, Rostovtsev, Stolbunov,
Charles, Goren, Lauter.

2017 SIDH is submitted to the NIST competition (with the name
SIKE, only isogeny-based candidate).

2018 Castryck, Lange, Martindale, Panny & Renes publish an
e�icient variant of HHS named CSIDH.

2019 New isogeny protocols: Signatures, Verifiable Delay
Functions, . . .
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Computing Isogenies
Vélu’s formulas

Input: A subgroupH � E ,
Output: The isogeny � : E ! E=H .

Complexity: O(`)— Vélu 1971, . . .
Why? Evaluate isogeny on pointsP 2 E ;

Walk in isogeny graphs.

Explicit Isogeny Problem
Input: CurveE , (prime) integer `

Output: All subgroupsH � E of order `.
Complexity: ~O(`2)— Elkies 1992

Why? List all isogenies of given degree;
Count points of elliptic curves;
Compute endomorphism rings of elliptic curves;
Walk in isogeny graphs.
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Computing Isogenies
Explicit Isogeny Problem (2)

Input: CurvesE ;E 0, isogenous of degree `.
Output: The isogeny � : E ! E 0 of degree `.

Complexity: O(`2)— Elkies 1992; Couveignes 1996; Lercier and Sirvent
2008; De Feo 2011; De Feo, Hugounenq, Plût, and Schost 2016;
Lairez and Vaccon 2016, . . .

Why? Count points of elliptic curves.

Isogeny Walk Problem
Input: Isogenous curvesE ;E 0.

Output: An isogeny � : E ! E 0 of smooth degree.
Complexity: Generically hard — Galbraith, Hess, and Nigel P. Smart 2002,

. . .
Why? Cryptanalysis (ECC);

Foundational problem for isogeny-based cryptography.
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Randomwalks and hash functions (circa 2006)
Any expander graph gives rise to a hash function.

v
0

1
1

0
0

1
1

0
0

1
1

0

v 0 H (010101) = v 0

Fix a starting vertex v ;
The value to be hashed determines a random path to v 0;
v 0 is the hash.

(Denis X. Charles, Kristin E. Lauter, and Goren 2009) hash function
(CGL)

Use the expander graph of supersingular 2-isogenies;
Collision resistance

2nd preimage resistance

)
= hardness of finding cycles in the graph;

Preimage resistance = hardness of finding a path from v to v 0.
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Hardness of CGL
Finding cycles

Analogous to finding endomorphisms. . .
. . .very bad idea to start from a curve with known endomorphism ring!
Translation algortihm: elements ofBp;1$ isogeny loops
Doable in polylog(p).a

aKohel, K. Lauter, Petit, and Tignol 2014; Eisenträger, Hallgren, K. Lauter,
Morrison, and Petit 2018.

Finding pathsE ! E 0

Analogous to finding connecting ideals between twomaximal orders
O;O0 (i.e. a le� ideal I � O that is a right ideal ofO0).
Poly-time equivalent to computingEnd(E) andEnd(E 0).a

Best known algorithm to computeEnd(E) takes poly(p).b

aEisenträger, Hallgren, K. Lauter, Morrison, and Petit 2018.
bKohel 1996; Cerviño 2004.
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Kohel, K. Lauter, Petit, and Tignol 2014 (KLPT)

Input: Maximal orderO � Bp;1 and associated curveE ,
Le� ideal I � O.

Output: Maximal orderO0 � Bp;1 s.t. I connectsO toO0,
Equivalent ideal J (i.e., also connectingO toO0)
of [smooth/power-smooth] norm.
Isogeny walk associated to J .

Complexity: polylog(p),
Output size: polylog(p),
Useful for:
I “Shortening” isogeny walks (see VDFs),
I “Reducing” isogeny walks (see Signatures),

when these start from a curve with known endomorphism ring!
(think j = 0; 1728 and other curves with small CM discriminant)
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Sampling supersingular curves
How to sample:

A supersingular curveE=Fp?
A supersingular curveE=Fp2?

Randomwalks
Start from a supersingular curveE0 with small CM discriminant
(e.g.: j = 1728),
Do a randomwalkE0 ! E until reaching the mixing bound
(O(log(p)) steps).

Problem: the randomwalk revealsEnd(E) via the KLPT algorithm.

Open problem
Give an algorithm to sample (uniformly) random supersingular curves in a
way that does not reveal the endomorphism ring.
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Boneh, Lynn, and Shacham 2004 signatures (BLS)

Setup: Elliptic curveE=Fp , s.tN j#E(Fp) for a large primeN ,
(Weil) pairing eN : E [N ]� E [N ]! Fpk for some small
embedding degree k ,
A decompositionE [N ] = X1 �X2, withX1 = hPi.
A hash functionH : f0; 1g� ! X2.

Private key: s 2 Z=NZ.
Public key: sP .

Sign: m 7! sH (m).
Verifiy: eN (P ; sH (m)) = eN (sP ;H (m)).

X1 �X2 X1 �X2

X1 �X2 Fpk

[s ]� 1

1� [s ] eN

eN
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US patent 8,250,3673

Signatures from isogenies + pairings
Replace the secret [s ] : E ! E with an isogeny � : E ! E 0;
Define decompositions

E [N ] = X1 �X2; E 0[N ] = Y1 �Y2;

s.t. �(X1) = Y1 and �(X2) = Y2;
Define a hash functionH : f0; 1g� ! Y2.

X1 �Y2 Y1 �Y2

X1 �X2 Fpk

�� 1

1� �̂ e 0

N

eN

Useless, but nice!

3Broker, Denis X Charles, and Kristin E Lauter 2012.
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Verifiable Delay Functions

A Verifiable Delay Function (VDF) is a function f : X ! Y s.t.:
Evaluating f at random x 2 X is provably “slow” (e.g., poly(#X )),
Given x 2 X and y 2 Y ,
verifying that f (x ) = y can be done “fast” (e.g., polylog(#X )).

(non)-Example: time-lock puzzles
Take a trapdoor groupG of (e.g.,G = Z=NZwithN = pq );

Define f : G ! G as f (g) = g2T :
I Best algorithm if p; q known: compute g2T mod '(pq) polylog(N )
I Best algorithm if p; q unknown: T squarings O(T )

However, in VDFs we want to let anyone verify e�iciently.

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Mar 18, 2019 —Maths of PKC 50 / 93



VDFs from groups of unknown order

Interactive verification protocol (Wesolowski 2019)
1 Verifier chooses a prime ` in a set of small primesP ;
2 Prover computes 2T = a`+ b, sends g2T

; ga to verifier;
3 Verifier computes 2T = a`+ b, checks that

g2T
= (ga)`gb

Can bemade non-interactive via Fiat-Shamir.

Candidate groups of unknown order:
RSA groupsZ=NZ, needs trusted third party to generateN = pq ;
Quadratic imaginary class groupsCl(�D) for large random
discriminants�D < 0.
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VDFs from isogenies and pairings4

X1 �Y2 Y1 �Y2

X1 �X2 Fpk

�� 1

1� �̂ e 0

N

eN

Setup: Supersingular curveE=Fp with (Weil) pairing eN ;
Public isogeny � : E ! E 0 of degree 2T ;
The dual isogeny �̂ : E 0 ! E ;
A generator hPi = X1 � E [N ], compute �(P).

Evaluate: On input a randomQ 2 Y2 � E 0[N ], compute �̂(Q).
Verify: Check that eN (P ; �̂(Q)) = e 0N (�(P);Q).

4De Feo, Masson, Petit, and Sanso 2019.
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Security

Obvious attack: Pairing inversion must be hard (not post-quantum).
Wanted: No better way to evaluate �̂ : E 0 ! E than composingT

degree 2 isogenies.

Shortcuts
If we can find a shorter way fromE toE 0, we can evaluate �̂ faster.
Shortcuts are easy to compute:
I If the isogeny graph is small (excludes ordinary pairing friendly curves);
I IfEnd(E) orEnd(E 0) is known (via KLPT).

Needed: chooseE=Fp in a way that does not revealEnd(E);
Only known solution: let a trusted third party generateE .
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Let’s get back to Di�ie-Hellman

P

Q

R

P +Q
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Elliptic curves

I power 70% of WWW tra�ic!
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The Q Menace
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Post-quantum cryptographer?
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Elliptic curves of the world, UNITE!

QUOUSQUE
QUANTUM?

QUANTUM
SUFFICIT!
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And so, they found a way around the Q...

Public curve

Public curve

Shared secret
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Expander graphs from groups

g2

g4
g8

g3

g6

g12

g11

g9

g5
g10

g7

g1

Let G = hgi be a cyclic
group of order p.

Let
S � (Z=pZ)� s.t.
S�1 � S .
The Schreier graph of
(S ;G n f1g) is (usually)
an expander.

x 7! x 2

x 7! x 3

x 7! x 5
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Key exchange from Schreier graphs

g

gA

gB

gBA

= gAB

Public parameters:
A groupG = hgi of order p;
A subset S � (Z=pZ)�.

1 Alice takes a secret random
walk sA : g ! gA of length
O(log p);

2 Bob does the same;
3 They publish gA and gB ;
4 Alice repeats her secret walk

sA starting from gB .
5 Bob repeats his secret walk

sB starting from gA.
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Key exchange from Schreier graphs

g

gA

gB

gBA = gAB

Why does this work?

gA = g2�3�2�5;

gB = g32�5�2;

gBA = gAB = g23�33�52
;

and gA; gB ; gAB are uniformly
distributed inG . . .

. . . Indeed, this is just a twisted
presentation of the classical
Di�ie-Hellman protocol!

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Mar 18, 2019 —Maths of PKC 61 / 93



Key exchange from Schreier graphs

g

gA

gB

gBA = gAB

Why does this work?

gA = g2�3�2�5;

gB = g32�5�2;

gBA = gAB = g23�33�52
;

and gA; gB ; gAB are uniformly
distributed inG . . .

. . . Indeed, this is just a twisted
presentation of the classical
Di�ie-Hellman protocol!

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Mar 18, 2019 —Maths of PKC 61 / 93



Key exchange in graphs of ordinary isogenies5 (CRS)
Parameters:

E=Fp ordinary elliptic curve, with Frobenius endomorphism � 2 O.
(small) primes `1,`2,. . .such that

�
D�

`i

�
= 1.

elements f1 = (`1; � � �1), f2 = (`2; � � �2),. . . inCl(O).
Secret data: Randomwalks a; b 2 Cl(O) in the isogeny graph.

E

a � E b � E

ab � E = ba � E

fa1
1 fa2

2 � � � = a b = fb11 fb22 � � �

5Couveignes 2006; Rostovtsev and Stolbunov 2006.
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Computing the action ofCl(O)

Input: An ideal class a = fa1
1 fa2

2 � � � .
Output: The elliptic curve a � E .

Algorithm: Let fn = (`; � � �)n , repeat n times:
Use Elkies’ algorithm to find all (two) curves isogenous
toE of degree `,
Choose the one such that ker� � ker(� � �).

Parameters size / performance
Adversary goal: GivenE ; a � E , find a;
Graph size: #Cl(O) � p

p;
Best (classical) attack: Meet-in-the-middle / Random-walk in

p
#Cl(O);

For 2128 security: choose log p � 512;
Time to evaluate the isogeny actiona: Dozens of minutes!

aDe Feo, Kie�er, and Smith 2018.
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Vélu to the rescue?
Input: An ideal class a = fa1

1 fa2
2 � � � .

Output: The elliptic curve a � E .
Algorithm: Let fn = (`; � � �)n . Why not:

Presciently findH = E [`] \ ker(� � �),
Apply Vélu’s formulas toH .

Speeding up the class group action
Problem: H must be inE(Fp) for Vélu’s formulas to be e�icient.

Ideaa: Force

(
p = �1 mod `;

� = 1 mod `;

so thatE [`] = H � E(Fp).

How to waste an internship: Forcing � = Forcing#E = Very hard!
Time to evaluate the isogeny action: Still 5 minutes!

aDe Feo, Kie�er, and Smith 2018.
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Supersingular to the rescue!

For all supersingular curves defined over Fp ,

� =

 p�p 0
0 �p�p

!
mod `

CSIDH (pron.: Seaside)
Choose p = �1 mod ` for many primes `;
Hence, � = 1 mod `. Win!

Performance: Same security as CRS in less than 50ms!a

aCastryck, Lange, Martindale, Panny, and Renes 2018.
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Quantum security
Fact: Shor’s algorithm does not apply to Di�ie-Hellman protocols from
group actions.

Subexponential attack exp(
p
log p log log p)

Reduction to the hidden shi� problem by evaluating the class group
action in quantum superspositiona (subexpoential cost);
Well known reduction from the hidden shi� to the dihedral
(non-abelian) hidden subgroup problem;
Kuperberg’s algorithmb solves the dHSP with a subexponential
number of class group evaluations.
Recent workc suggests that 264-qbit security is achieved somewhere in
512 < log p < 1024.

aChilds, Jao, and Soukharev 2014.
bKuperberg 2005; Regev 2004; Kuperberg 2013.
cBonnetain and Naya-Plasencia 2018; Bonnetain and Schrottenloher 2018;

Biasse, Jacobson Jr, and Iezzi 2018; Jao, LeGrow, Leonardi, and Ruiz-Lopez 2018;
Bernstein, Lange, Martindale, and Panny 2018.
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Key exchange with supersingular curves (2011)
Good news: there is no action of a commutative class group.
Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two di�erent isogeny graphs on the
same vertex set.

Figure: 2- and 3-isogeny
graphs on F972 .
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Key exchange with supersingular curves (2011)
Fix small primes `A, `B ;
No canonical labeling of the `A- and `B -isogeny graphs; however. . .

Walk of length eA
=

Isogeny of degree `eA
A

=
Kernel hPi � E [`eA

A ]

ker� = hPi � E [`eA
A ]

ker = hQi � E [`eB
B ]

ker�0 = h (P)i
ker 0 = h�(Q)i

E E=hPi

E=hQi E=hP ;Qi

�

�0

  0
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Supersingular Isogeny Di�ie-Hellman6

Parameters:
Prime p such that
p + 1 = `aA`

b
B ;

Supersingular curve
E ' (Z=(p + 1)Z)2;

E [`aA] = hPA;QAi;
E [`bB ] = hPB ;QB i.

Secret data:
RA = mAPA + nAQA,

RB = mBPB + nBQB ,

E

E=hRAi

�(PB )

�(QB )

E=hRBi

 (PA)

 (QA)

E=hRAi
�(RB )

' E=hRA;RBi ' E=hRB i
 (RA)

�  

 0 �0

�(RB )  (RA)

6Jao and De Feo 2011; De Feo, Jao, and Plût 2014.
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From 10minutes to 10ms in 20 years

1996

Couveignes’ key exchange

2006

Rostovstev & Stolbunov (> 5 min)

2011

Jao and D.’s SIDH (500ms)

2012

D., Jao and Plût’s SIDH (50ms)

2016

Costello, Longa, Naherig’s SIDH (30ms)

2017

SIKE NIST candidate (10ms)

2018

CSIDH (50ms)
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Open problems

From easier to harder:
Give a convincing constant-time implementation of CSIDH.
Find new isogeny-based primitives/protocols.
Precisely asses the quantum security of CRS/CSIDH.
Find an e�icient post-quantum isogeny-based signature scheme.
Exploit the extra information transmitted in SIDH/SIKE for
cryptanalytic purposes.
Sample supersingular curves without revealing endomorphism rings.
Compute endomorphism rings of supersingular curves.
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Thank you

https://defeo.lu/

@luca_defeo
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