Verifiable Delay Functions from Isogenies and Pairings

Luca De Feo

joint work with J. Burdges, S. Masson, C. Petit, A. Sanso

Université Paris Saclay - UVSQ, France

July 13, 2019, SIAM AG, Bern Slides online at https://defeo.lu/docet

Tired of *SIDH?

Tired of *SIDH?

Enough quantum FUD?

Tired of *SIDH?

Enough quantum FUD?

Ready for a new buzzword?

Distributed lottery

Participants A, B, ..., Z want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Distributed lottery

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Fixes

Distributed lottery

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Fixes

- Make it possible to verify $w = H(s_A, \ldots, s_Z)$ fast.

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs *x*,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:

ideally, exponential separation between evaluation and verification.

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs *x*,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:

ideally, exponential separation between evaluation and verification.

Exercise

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs *x*,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:

ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs *x*,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:

ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs *x*,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

You're probably wrong!

Sequentiality

Ideal functionality:

$$y = f(x) = \underbrace{H(H(\cdots(H(x))))}_{T \text{ times}}$$

- Sequential assuming hash output "unpredictability",
- but how do you verify?

VDFs from groups of unknown order

Setup

A group of unknown order, e.g.:

- ℤ/Nℤ with N = pq an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T:

$$egin{array}{ccc} f:G \longrightarrow G \ x \longmapsto x^{2^T} \end{array}$$

Conjecturally, fastest algorithm is repeated squaring.

Verification (Wesolowski 2019, Pietrzak 2019)

VDFs from groups of unknown order

Setup

A group of unknown order, e.g.:

- ℤ/Nℤ with N = pq an RSA modulus, p, q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T:

$$egin{array}{ccc} f:G \longrightarrow G \ x \longmapsto x^{2^T} \end{array}$$

Conjecturally, fastest algorithm is repeated squaring.

Verification (Wesolowski 2019, Pietrzak 2019)

Aha!

Luca De Feo (UVSQ)

Isogeny <3 Pairing

Let $\phi: E \to E'$, let $P \in E[N]$ and $Q \in E'[N]$. Then $e_N(P, \hat{\phi}(Q)) = e_N(\phi(P), Q)$ $X_1 \times X_2 \xrightarrow{\phi \times 1} X_1 \times X_2$ $1 \times \hat{\phi} \downarrow \qquad \qquad \qquad \downarrow e_N$ $X_1 \times X_2 \xrightarrow{e_N} \mathbb{F}_{p^k}$

Isogeny <3 Pairing

Idea #1

Use the equation for a BLS-like signature scheme: US patent 8,250,367 (Broker, Charles, Lauter).

Isogeny VDF

Assume deg $\phi = 2^T$

$$e_N(\phi(P),\phi(Q))=e_N(P,Q)^{2^T}$$

Right side: known group structure: $2^T \rightarrow 2^T \mod p^k - 1$; Left side: can evaluate ϕ in less than T steps?

```
Isogeny VDF (\mathbb{F}_p-version)
```

Setup

• Pairing friendly supersingular curve E/\mathbb{F}_p

```
• Isogeny \phi: E 
ightarrow E' of degree 2^T,
```

• Point $P \in E[(N, \pi - 1)]$, image $\phi(P)$.

Evaluation

```
Input: random Q \in E'[(N, \pi + 1)],
Output: \hat{\phi}(Q).
```

Verification

$$e_N(P, \hat{\phi}(Q)) \stackrel{?}{=} e_N(\phi(P), Q).$$

```
Isogeny VDF (\mathbb{F}_p-version)
```

Trusted Setup

- Pairing friendly supersingular curve E/F_p
 with unknown endomorphism ring!!!
- Isogeny $\phi: E
 ightarrow E'$ of degree 2^T ,
- Point $P \in E[(N, \pi 1)]$, image $\phi(P)$.

Evaluation

```
Input: random Q \in E'[(N, \pi + 1)],
Output: \hat{\phi}(Q).
```

Verification

$$e_N(P, \hat{\phi}(Q)) \stackrel{?}{=} e_N(\phi(P), Q).$$

Sequentiality?

Wesolowski, Pietrzak:

 $x\longmapsto x^2$

Isogenies:

 $x\longmapsto xrac{xlpha_i-1}{x-lpha_i}$

No speedup? Even with unlimited parallelism? Really?

See Bernstein, Sorenson. Modular exponentiation via the explicit Chinese remainder theorem.

Luca De Feo (UVSQ)

