Isogeny graphs in cryptography

Luca De Feo

Université Paris Saclay, UVSQ

July 29 – August 29, 2019 Cryptography meets Graph Theory Würzburg, Franken, Germany

Projective space

Definition (Projective space)

Let \bar{k} an algebraically closed field, the projective space $\mathbb{P}^n(\bar{k})$ is the set of non-null (n + 1)-tuples $(x_0, \ldots, x_n) \in \bar{k}^n$ modulo the equivalence relation

$$(x_0,\ldots,x_n)\sim (\lambda x_0,\ldots,\lambda x_n) \qquad ext{with } \lambda\in ar k\setminus\{0\}.$$

A class is denoted by $(x_0 : \cdots : x_n)$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

• $\mathcal{O} = (0:1:0)$ is the point at infinity;

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

- $\mathcal{O} = (0:1:0)$ is the point at infinity;
- $y^2 = x^3 + ax + b$ is the affine equation.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

• The law is algebraic (it has formulas);

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- \mathcal{O} is the group identity;
- Opposite points have the same *x*-value.

Group structure

Torsion structure

Let E be defined over an algebraically closed field \overline{k} of characteristic p.

$$E[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$
 if $p \nmid m$,
 $E[p^e] \simeq egin{cases} \mathbb{Z}/p^e\mathbb{Z} & ext{ordinary case,} \\ \{\mathcal{O}\} & ext{supersingular case.} \end{cases}$

Free part

Let *E* be defined over a number field *k*, the group of *k*-rational points E(k) is finitely generated.

Maps: isomorphisms

Isomorphisms

The only invertible algebraic maps between elliptic curves are of the form

$$(x,y)\mapsto (u^2x,u^3y)$$

for some $u \in \overline{k}$. They are group isomorphisms.

j-Invariant

Let
$$E$$
 : $y^2 = x^3 + ax + b$, its *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

Maps: isogenies

Theorem

Let $\phi: E \to E'$ be a map between elliptic curves. These conditions are equivalent:

- *φ* is a surjective group morphism,
- ϕ is a group morphism with finite kernel,
- φ is a non-constant algebraic map of projective varieties sending the point at infinity of E onto the point at infinity of E'.

If they hold ϕ is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m

On any curve, an isogeny from E to itself (i.e., an endomorphism):

$$egin{array}{rcl} [m] & \colon & E o E, \ & P \mapsto [m]P \end{array}$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

$$oldsymbol{\phi}(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- This is a degree 2 map.
- Analogous to $x \mapsto x^2$ in \mathbb{F}_q^* .

Curves over finite fields

Frobenius endomorphism

Let *E* be defined over \mathbb{F}_q . The Frobenius endomorphism of *E* is the map

$$\pi : (X : Y : Z) \mapsto (X^q : Y^q : Z^q).$$

Hasse's theorem

Let *E* be defined over \mathbb{F}_q , then

$$|\#E(k)-q-1|\leq 2\sqrt{q}.$$

Serre-Tate theorem

Two elliptic curves E, E' defined over a finite field k are isogenous over k if and only if #E(k) = #E'(k).

Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent complex numbers. Set

 $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$

 \mathbb{C}/Λ is a complex torus.

Addition law induced by addition on \mathbb{C} .

 $\begin{array}{l} \mbox{Addition law} \\ \mbox{induced by} \\ \mbox{addition on } \mathbb{C}. \end{array}$

Addition law induced by addition on \mathbb{C} .

Addition law induced by addition on \mathbb{C} .

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

The *j*-invariant

We want to classify complex lattices/tori up to homothety.

Eisenstein series

Let Λ be a complex lattice. For any integer k > 0 define

$$G_{2k}(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-2k}.$$

Also set

$$g_2(\Lambda)=60\,G_4(\Lambda),\qquad g_3(\Lambda)=140\,G_6(\Lambda).$$

Modular *j*-invariant

Let Λ be a complex lattice, the modular *j*-invariant is

$$j(\Lambda)=1728rac{g_2(\Lambda)^3}{g_2(\Lambda)^3-27g_3(\Lambda)^2}.$$

Two lattices Λ , Λ' are homothetic if and only if $j(\Lambda) = j(\Lambda')$.

Elliptic curves over $\mathbb C$

Weierstrass p function

Let Λ be a complex lattice, the Weierstrass \wp function associated to Λ is the series

$$\wp(z;\Lambda) = rac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight).$$

Fix a lattice Λ , then \wp and its derivative \wp' are elliptic functions:

$$\wp(z+\omega)=\wp(z),\qquad \wp'(z+\omega)=\wp'(z)$$

for all $\omega \in \Lambda$.

Uniformization theorem

Let Λ be a complex lattice. The curve

$$E : y^2 = 4x^3 - g_2(\Lambda)x - g_3(\Lambda)$$

is an elliptic curve over \mathbb{C} . The map

$$egin{aligned} \mathbb{C}/\Lambda &
ightarrow E(\mathbb{C}), \ 0 &\mapsto (0:1:0), \ z &\mapsto (oldsymbol{
ho}(z):oldsymbol{arphi}'(z):1) \end{aligned}$$

is an isomorphism of Riemann surfaces and a group morphism. Conversely, for any elliptic curve

$$E : y^2 = x^3 + ax + b$$

there is a unique complex lattice Λ such that

$$g_2(\Lambda)=-4a, \qquad g_3(\Lambda)=-4b.$$

Moreover $j(\Lambda) = j(E)$.

Multiplication

Multiplication

Multiplication

Torsion subgroups

It is a group of rank two

Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z}\oplus \Lambda_1$

Then $\Lambda_1\subset\Lambda_2$ and we define a degree ℓ cover

 $\phi:\mathbb{C}/\Lambda_1 o\mathbb{C}/\Lambda_2$

 \$\phi\$ is a morphism of complex Lie
 groups and is
 called an isogeny.

Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z}\oplus \Lambda_1$

Then $\Lambda_1\subset\Lambda_2$ and we define a degree $\boldsymbol\ell$ cover

 $\phi:\mathbb{C}/\Lambda_1 o \mathbb{C}/\Lambda_2$

 \$\phi\$ is a morphism of complex Lie groups and is called an isogeny.

Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z}\oplus \Lambda_1$

Then $\Lambda_1\subset\Lambda_2$ and we define a degree $\boldsymbol\ell$ cover

 $\phi:\mathbb{C}/\Lambda_1 o \mathbb{C}/\Lambda_2$

 \$\phi\$ is a morphism of complex Lie groups and is called an isogeny.

Taking a point bnot in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point bnot in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point bnot in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Isogenies: back to algebra

Let $\phi: E
ightarrow E'$ be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- φ^{*}k(E') is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

Degree, separability

- The degree of ϕ is deg $\phi = [k(E) : \phi^* k(E')]$. It is always finite.
- ϕ is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- If ϕ is separable, then deg $\phi = \# \ker \phi$.
- If ϕ is purely inseparable, then ker $\phi = \{\mathcal{O}\}$ and deg ϕ is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

Isogenies: back to algebra

Let $\phi: E
ightarrow E'$ be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- φ^{*}k(E') is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

Degree, separability

- The degree of ϕ is deg $\phi = [k(E) : \phi^* k(E')]$. It is always finite.
- ϕ is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- If ϕ is separable, then deg $\phi = \# \ker \phi$.
- If ϕ is purely inseparable, then ker $\phi = \{\mathcal{O}\}$ and deg ϕ is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

Isogenies: separable vs inseparable

Purely inseparable isogenies

Examples:

- The Frobenius endomorphism is purely inseparable of degree q.
- All purely inseparable maps in characteristic p are of the form $(X : Y : Z) \mapsto (X^{p^e} : Y^{p^e} : Z^{p^e}).$

Separable isogenies

Let *E* be an elliptic curve, and let *G* be a finite subgroup of *E*. There are a unique elliptic curve *E'* and a unique separable isogeny ϕ , such that $\ker \phi = G$ and $\phi : E \to E'$. The curve *E'* is called the quotient of *E* by *G* and is denoted by *E/G*.

The dual isogeny

Let $\phi: E o E'$ be an isogeny of degree m. There is a unique isogeny $\hat{\phi}: E' o E$ such that

$$\hat{\phi}\circ\phi=[m]_E, \quad \phi\circ\hat{\phi}=[m]_{E'}.$$

 $\hat{\phi}$ is called the dual isogeny of ϕ ; it has the following properties:

Algebras, orders

- A quadratic imaginary number field is an extension of \mathbb{Q} of the form $Q[\sqrt{-D}]$ for some non-square D > 0.
- A quaternion algebra is an algebra of the form Q + αQ + βQ + αβQ, where the generators satisfy the relations

$$lpha^2,eta^2\in\mathbb{Q},\quad lpha^2<0,\quad eta^2<0,\quad etalpha=-lphaeta.$$

Orders

Let K be a finitely generated \mathbb{Q} -algebra. An order $\mathcal{O} \subset K$ is a subring of K that is a finitely generated \mathbb{Z} -module of maximal dimension. An order that is not contained in any other order of K is called a maximal order.

Examples:

- Z is the only order contained in Q,
- $\mathbb{Z}[i]$ is the only maximal order of $\mathbb{Q}(i)$,
- $\mathbb{Z}[\sqrt{5}]$ is a non-maximal order of $\mathbb{Q}(\sqrt{5})$,
- The ring of integers of a number field is its only maximal order,
- In general, maximal orders in quaternion algebras are not unique.

Luca De Feo (U Paris Saclay)

The endomorphism ring

The endomorphism ring $\operatorname{End}(E)$ of an elliptic curve E is the ring of all isogenies $E \to E$ (plus the null map) with addition and composition.

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p. End(E) is isomorphic to one of the following:

•
$$\mathbb{Z}$$
, only if $p = 0$

E is ordinary.

• An order \mathcal{O} in a quadratic imaginary field:

E is ordinary with complex multiplication by \mathcal{O} .

• Only if p > 0, a maximal order in a quaternion algebra^{*a*}:

E is supersingular.

^{*a*}(ramified at p and ∞)

The finite field case

Theorem (Hasse)

Let E be defined over a finite field. Its Frobenius endomorphism π satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0$$

in End(*E*) for some $|t| \le 2\sqrt{q}$, called the trace of π . The trace *t* is coprime to *q* if and only if *E* is ordinary.

Suppose *E* is ordinary, then $D_{\pi} = t^2 - 4q < 0$ is the discriminant of $\mathbb{Z}[\pi]$.

• $K = \mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{D_{\pi}})$ is the endomorphism algebra of E.

• Denote by \mathcal{O}_K its ring of integers, then

$$\mathbb{Z}
eq \mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset \mathcal{O}_K.$$

In the supersingular case, π may or may not be in \mathbb{Z} , depending on q.

Endomorphism rings of ordinary curves

Classifying quadratic orders

Let K be a quadratic number field, and let \mathcal{O}_K be its ring of integers.

- Any order O ⊂ K can be written as O = Z + fO_K for an integer f, called the conductor of O, denoted by [O_k : O].
- If d_K is the discriminant of K, the discriminant of \mathcal{O} is $f^2 d_K$.
- If O, O' are two orders with discriminants d, d', then O ⊂ O' iff d' | d.

Ideal lattices

Fractional ideals

Let \mathcal{O} be an order of a number field K. A (fractional) \mathcal{O} -ideal \mathfrak{a} is a finitely generated non-zero \mathcal{O} -submodule of K.

When *K* is imaginary quadratic:

- Fractional ideals are complex lattices,
- Any lattice $\Lambda \subset K$ is a fractional ideal,
- The order of a lattice Λ is

$$\mathcal{O}_{\Lambda} = \{ \pmb{lpha} \in K \; \mid \; \pmb{lpha} \Lambda \subset \Lambda \}$$

Complex multiplication

Let $\Lambda \subset K$, the elliptic curve associated to \mathbb{C}/Λ has complex multiplication by \mathcal{O}_{Λ} .

The class group

Let $\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

```
The class group
```

```
The class group of {\mathcal O} is
```

$$\mathrm{Cl}(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order $h(\mathcal{O})$ is called the class number of \mathcal{O} .
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

Fundamental theorem of CM

Let \mathcal{O} be an order of a number field K, and let $\mathfrak{a}_1, \ldots, \mathfrak{a}_{h(\mathcal{O})}$ be representatives of $Cl(\mathcal{O})$. Then:

- $K(j(a_i))$ is an Abelian extension of K;
- The $j(a_i)$ are all conjugate over K;
- The Galois group of K(j(a_i)) is isomorphic to Cl(O);
- $[\mathbb{Q}(j(\mathfrak{a}_i)):\mathbb{Q}] = [K(j(\mathfrak{a}_i)):K] = h(\mathcal{O});$
- The j(a_i) are integral, their minimal polynomial is called the Hilbert class polynomial of 𝔅.

Lifting

Deuring's lifting theorem

Let E_0 be an elliptic curve in characteristic p, with an endomorphism ω_o which is not trivial. Then there exists an elliptic curve E defined over a number field L, an endomorphism ω of E, and a non-singular reduction of E at a place \mathfrak{p} of L lying above p, such that E_0 is isomorphic to $E(\mathfrak{p})$, and ω_0 corresponds to $\omega(\mathfrak{p})$ under the isomorphism.

Executive summary

- Elliptic curves are algebraic groups;
- Isogenies are the natural notion of morphism for EC: both group and projective variety morphism;
- We can understand most things about isogenies by looking only at endomorphisms;
- Isogenies of curves over $\mathbb C$ are especially simple to describe;
- It is easy to construct curves over C with prescribed complex multiplication;
- Most of what happens in positive characteristic can be understood by:
 - looking at the Frobenius endomorphism, and/or
 - looking at reductions of curves in characteristic 0.

Isogeny graphs

Isogeny graphs

Serre-Tate theorem reloaded

Two elliptic curves E, E' defined over a finite field are isogenous iff their endomorphism algebras $\operatorname{End}(E) \otimes \mathbb{Q}$ and $\operatorname{End}(E') \otimes \mathbb{Q}$ are isomorphic.

Isogeny graphs

- Vertices are curves up to isomorphism,
- Edges are isogenies up to isomorphism.

Isogeny volcanoes

- Curves are ordinary,
- Isogenies all have degree a prime *l*.

What do isogeny graphs look like?

Torsion subgroups (*l* prime) In an algebraically closed field:

 $E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$

₩

There are exactly $\ell + 1$ cyclic subgroups $H \subset E$ of order ℓ :

$$\langle P+Q \rangle, \langle P+2Q \rangle, \dots, \langle P \rangle, \langle Q \rangle$$

$$\downarrow \downarrow$$

There are exactly $\ell + 1$ distinct isogenies of degree ℓ .

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{ll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$

$$\pi(P) = aP + bQ$$

$$\pi(Q) = cP + dQ$$

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

 $E[{m\ell}]=\langle P,\,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{lll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$

aP + bQcP + dQ

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,\,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{lll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$

$$\begin{pmatrix} aP+bQ\\ cP+dQ \end{pmatrix}$$

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{ll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on
$$E[\ell]$$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{ll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on
$$E[\ell]$$
 $\pi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mod \ell$

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{lll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$ $\pi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mod \ell$ We identify $\pi | E[\ell]$ to a conjugacy class in $\operatorname{GL}(\mathbb{Z}/\ell\mathbb{Z})$.

Galois invariant subgroups of $E[\ell]$ = eigenspaces of $\pi \in \operatorname{GL}(\mathbb{Z}/\ell\mathbb{Z})$ = rational isogenies of degree ℓ

```
Galois invariant subgroups of E[\ell]
=
eigenspaces of \pi \in \operatorname{GL}(\mathbb{Z}/\ell\mathbb{Z})
=
rational isogenies of degree \ell
```


Let E, E' be curves with respective endomorphism rings $\mathcal{O}, \mathcal{O}' \subset K$. Let $\phi : E \to E'$ be an isogeny of prime degree ℓ , then:

$$\begin{array}{ll} \text{if } \mathcal{O} = \mathcal{O}', & \phi \text{ is horizontal;} \\ \text{if } [\mathcal{O}' : \mathcal{O}] = \ell, & \phi \text{ is ascending;} \\ \text{if } [\mathcal{O} : \mathcal{O}'] = \ell, & \phi \text{ is descending.} \end{array}$$

Let E be ordinary, End $(E) \subset K$.

 \mathcal{O}_K : maximal order of K, D_K : discriminant of K.

		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K:\mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$oldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\ell \mid [\mathcal{O}:\mathbb{Z}[\pi]]$. ,	1	l
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$oldsymbol{\ell} eq [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

Let E be ordinary, End $(E) \subset K$.

 \mathcal{O}_K : maximal order of K, D_K : discriminant of K.

 $\mathsf{Height} = v_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$

		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	· · · · ·	1	Ì
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\boldsymbol{\ell} \nmid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

Let E be ordinary, End $(E) \subset K$.

 \mathcal{O}_K : maximal order of K, D_K : discriminant of K.

- $\mathsf{Height} = v_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$
- How large is the crater?

		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	l
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\boldsymbol{\ell} \nmid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

How large is the crater of a volcano?

Let $\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

```
The class group
```

```
The class group of {\mathcal O} is
```

$$\mathrm{Cl}(\mathcal{O})=\mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order $h(\mathcal{O})$ is called the class number of \mathcal{O} .
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

The a-torsion

- Let a ⊂ O be an (integral invertible) ideal of O;
- Let E[a] be the subgroup of E annihilated by α:

 $E[\mathfrak{a}] = \{P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a}\};$

• Let $\phi: E \to E_{\mathfrak{a}}$, where $E_{\mathfrak{a}} = E/E[\mathfrak{a}]$.

Then $\operatorname{End}(E_{\mathfrak{a}}) = \mathcal{O}$ (i.e., ϕ is horizontal).

Theorem (Complex multiplication)

The action on the set of elliptic curves with complex multiplication by \mathcal{O} defined by $\mathfrak{a} * j(E) = j(E_{\mathfrak{a}})$ factors through $Cl(\mathcal{O})$, is faithful and transitive.

Corollary

Let End(*E*) have discriminant *D*. Assume that $\begin{pmatrix} D \\ \ell \end{pmatrix} = 1$, then *E* is on a crater of size *N* of an ℓ -volcano, and N|h(End(E))

Luca De Feo (U Paris Saclay)

elliptic curves with complex E_3 multiplication by \mathcal{O}_K E_4 E_2 • (i.e., End(E) $\simeq \mathcal{O}_K \subset$ $\mathbb{O}(\sqrt{-D})).$ E_5 E_1 $E_6 \bullet$ • E_{12} E_7 E_{11} E_{10} E_8 E_{9}

Vertices

are

Luca De Feo (U Paris Saclay)

elliptic are curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset$ $\mathbb{Q}(\sqrt{-D})).$ Edges are horizontal isogenies of bounded prime degree.

degree 2

Vertices

degree 3

degree 5

Vertices elliptic are curves with complex multiplication by \mathcal{O}_K (i.e., End(E) $\simeq \mathcal{O}_K \subset$ $\mathbb{Q}(\sqrt{-D})).$ Edges are horizontal isogenies of bounded prime degree. degree 2 degree 3

degree 5

Isomorphic to a Cayley graph of $Cl(\mathcal{O}_K)$.

Supersingular endomorphisms

Recall, a curve E over a field \mathbb{F}_q of characteristic p is supersingular iff

$$\pi^2 - t\pi + q = 0$$

with $t = 0 \mod p$.

Case: t=0 \Rightarrow $D_{\pi}=-4q$

• Only possibility for E/\mathbb{F}_p ,

• E/\mathbb{F}_p has CM by an order of $\mathbb{Q}(\sqrt{-p})$, similar to the ordinary case.

Case: $t = \pm 2\sqrt{q} \Rightarrow D_{\pi} = 0$

• General case for E/\mathbb{F}_q , when q is an even power.

• $\pi = \pm \sqrt{q}$, hence no complex multiplication.

We will ignore marginal cases: $t = \pm \sqrt{q}, \pm \sqrt{2q}, \pm \sqrt{3q}$.

Supersingular complex multiplication

Let E/\mathbb{F}_p be a supersingular curve, then $\pi^2 = -p$, and

$$\pi = ig(egin{array}{cc} \sqrt{-p} & 0 \ 0 & -\sqrt{-p} \ ig) \mod oldsymbol{\ell}$$

for any ℓ s.t. $\left(\frac{-p}{\ell}\right) = 1$.

Theorem (Delfs and Galbraith 2016)

Let $\operatorname{End}_{\mathbb{F}_p}(E)$ denote the ring of \mathbb{F}_p -rational endomorphisms of E. Then

 $\mathbb{Z}[\pi] \subset \operatorname{End}_{\mathbb{F}_p}(E) \subset \mathbb{Q}(\sqrt{-p}).$

Orders of $\mathbb{Q}(\sqrt{-p})$

• If $p = 1 \mod 4$, then $\mathbb{Z}[\pi]$ is the maximal order.

• If $p = -1 \mod 4$, then $\mathbb{Z}[\frac{\pi+1}{2}]$ is the maximal order, and $[\mathbb{Z}[\frac{\pi+1}{2}] : \mathbb{Z}[\pi]] = 2$.

Supersingular CM graphs

All other ℓ -graphs are cycles of horizontal isogenies iff $\left(\frac{-p}{\ell}\right) = 1$.

The full endomorphism ring

Theorem (Deuring)

Let E be a supersingular elliptic curve, then

- *E* is isomorphic to a curve defined over 𝔽_{p²};
- Every isogeny of *E* is defined over \mathbb{F}_{p^2} ;
- Every endomorphism of *E* is defined over \mathbb{F}_{p^2} ;
- End(*E*) is isomorphic to a maximal order in a quaternion algebra ramified at p and ∞ .

In particular:

- If *E* is defined over \mathbb{F}_p , then $\operatorname{End}_{\mathbb{F}_p}(E)$ is strictly contained in $\operatorname{End}(E)$.
- Some endomorphisms do not commute!

An example

The curve of j-invariant 1728

$$E: y^2 = x^3 + x$$

is supersingular over \mathbb{F}_p iff $p = -1 \mod 4$.

Endomorphisms

 $\operatorname{End}(E) = \mathbb{Z} \langle \iota, \pi \rangle$, with:

- π the Frobenius endomorphism, s.t. $\pi^2 = -p$;
- ι the map

$$\iota(x,y)=(-x,iy),$$

where $i \in \mathbb{F}_{p^2}$ is a 4-th root of unity. Clearly, $\iota^2 = -1$.

And $\iota \pi = -\pi \iota$.

Quaternion algebra?! WTF?²

The quaternion algebra $B_{p,\infty}$ is:

- A 4-dimensional \mathbb{Q} -vector space with basis (1, i, j, k).
- A non-commutative division algebra¹ $B_{p,\infty} = \mathbb{Q}\langle i, j \rangle$ with the relations:

$$i^2=a, \quad j^2=-p, \quad ij=-ji=k,$$

for some a < 0 (depending on p).

- All elements of $B_{p,\infty}$ are quadratic algebraic numbers.
- B_{p,∞} ⊗ Q_ℓ ≃ M_{2×2}(Q_ℓ) for all ℓ ≠ p.
 I.e., endomorphisms restricted to E[ℓ^e] are just 2 × 2 matrices modℓ^e.
- $B_{p,\infty} \otimes \mathbb{R}$ is isomorphic to Hamilton's quaternions.
- $B_{p,\infty} \otimes \mathbb{Q}_p$ is a division algebra.

¹All elements have inverses. ²What The Field?

Luca De Feo (U Paris Saclay)

Supersingular graphs

- Quaternion algebras have many maximal orders.
- For every maximal order type of $B_{p,\infty}$ there are 1 or 2 curves over \mathbb{F}_{p^2} having endomorphism ring isomorphic to it.
- Left ideals act on the set of maximal orders like isogenies.
- The graph of ℓ -isogenies is $(\ell + 1)$ -regular.

Figure: 3-isogeny graph on \mathbb{F}_{97^2} .

Graphs lexicon

- Degree: Number of (outgoing/ingoing) edges.
- *k*-regular: All vertices have degree *k*.
- Connected: There is a path between any two vertices.
 - Distance: The length of the shortest path between two vertices. Diamater: The longest distance between two vertices.
- $\lambda_1 \geq \cdots \geq \lambda_n$: The (ordered) eigenvalues of the adjacency matrix.
Expander graphs

Proposition

If G is a k-regular graph, its largest and smallest eigenvalues satisfy

$$k = \lambda_1 \ge \lambda_n \ge -k.$$

Expander families

An infinite family of connected k-regular graphs on n vertices is an expander family if there exists an $\epsilon > 0$ such that all non-trivial eigenvalues satisfy $|\lambda| \leq (1 - \epsilon)k$ for n large enough.

- Expander graphs have short diameter ($O(\log n)$);
- Random walks mix rapidly (after $O(\log n)$ steps, the induced distribution on the vertices is close to uniform).

Expander graphs from isogenies

Theorem (Pizer 1990, 1998)

Let ℓ be fixed. The family of graphs of supersingular curves over \mathbb{F}_{p^2} with ℓ -isogenies, as $p \to \infty$, is an expander family^{*a*}.

^{*a*}Even better, it has the Ramanujan property.

Theorem (Jao, Miller, and Venkatesan 2009)

Let $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$ be an order in a quadratic imaginary field. The graphs of all curves over \mathbb{F}_q with complex multiplication by \mathcal{O} , with isogenies of prime degree bounded^{*a*} by $(\log q)^{2+\delta}$, are expanders.

^aMay contain traces of GRH.

Executive summary

- Separable ℓ -isogeny = finite kernel = subgroup of $E[\ell]$,
 - eigenspace of π iff \mathbb{F}_q -rational,
 - distinct eigenvalues $\lambda \neq \mu$ define distinct directions on the crater.
- Isogeny graphs have *j*-invariants for vertices and "some" isogenies for edges.
- By varying the choices for the vertex and the isogeny set, we obtain graphs with different properties.
- *l*-isogeny graphs of ordinary curves are volcanoes, (full) *l*-isogeny graphs of supersingular curves are finite (*l* + 1)-regular.
- CM theory naturally leads to define graphs of horizontal isogenies (both in the ordinary and the supersingular case) that are isomorphic to Cayley graphs of class groups.
- CM graphs are expanders. Supseringular full *l*-isogeny graphs are Ramanujan.

Isogeny graphs

Isogeny graphs taxonomy

Complex Multiplication (CM) graphs

- Ordinary / Supersingular (\mathbb{F}_p)
- Superposition of isogeny cycles (one color per degree)
- Isomorphic to Cayley graph of a quadratic class group
- Large automorphism group
- Typical size $O(\sqrt{p})$
- Used in: CSIDH

Full supersingular graphs

- Supersingular (\mathbb{F}_{p^2})
- One isogeny degree
- $(\ell + 1)$ -regular
- Tiny automorphism group
- Size $\approx p/12$
- Used in: SIDH

Diffie-Hellman key exchange

Goal: Alice and Bob have never met before. They are chatting over a public channel, and want to agree on a shared secret to start a private conversation.

Setup: They agree on a (large) cyclic group $G = \langle g \rangle$ of order N.

Alice

Bob

Brief history of DH key exchange

- 1976 Diffie & Hellman publish New directions in cryptography, suggest using $G = \mathbb{F}_{p}^{*}$.
- 1978 Pollard publishes his discrete logarithm algorithm ($O(\sqrt{\#G})$ complexity).
- 1980 Miller and Koblitz independently suggest using elliptic curves $G = E(\mathbb{F}_p)$.
- 1994 Shor publishes his quantum discrete logarithm / factoring algorithm.
- 2005 NSA standardizes elliptic curve key agreement (ECDH) and signatures ECDSA.
- 2017 \sim 70% of web traffic is secured by ECDH and/or ECDSA.
- 2017 NIST launches post-quantum competition, says "not to bother moving to elliptic curves, if you haven't yet".

History of isogeny-based cryptography

- 1996 Couveignes introduces the Hard Homogeneous Spaces. His work stays unpublished for 10 years.
- 2006 Rostovtsev & Stolbunov independently rediscover Couveignes ideas, suggest isogeny-based Diffie–Hellman as a quantum-resistant primitive.
- 2006-2010 Other isogeny-based protocols by Teske and Charles, Goren & Lauter.
- 2011-2012 D., Jao & Plût introduce SIDH, an efficient post-quantum key exchange inspired by Couveignes, Rostovtsev, Stolbunov, Charles, Goren, Lauter.
 - 2017 SIDH is submitted to the NIST competition (with the name SIKE, only isogeny-based candidate).
 - 2018 D., Kieffer & Smith *resurrect* the Couveignes–Rostovtsev–Stolbunov protocol, Castryck, Lange, Martindale, Panny & Renes publish an efficient variant named CSIDH.

Elliptic curves

Luca De Feo (U Paris Saclay)

The QUANTHOM Menace

Basically every isogeny-based protocol...

Basically every isogeny-based protocol...

Luca De Feo (U Paris Saclay)

Basically every isogeny-based protocol...

Luca De Feo (U Paris Saclay)

Vélu's formulas

Input: A subgroup $H \subset E$, Output: The isogeny $\phi : E \to E/H$. Complexity: $O(\ell) - V$ élu 1971, ... Why? • Evaluate isogeny on points $P \in E$; • Walk in isogeny graphs.

Vélu's formulas

Input: A subgroup $H \subset E$,

Output: The isogeny $\phi : E \to E/H$.

Complexity: $O(\ell) - V \acute{e} lu 1971, \dots$

- Why? Evaluate isogeny on points $P \in E$;
 - Walk in isogeny graphs.

Explicit Isogeny Problem

```
Input: Curve E, (prime) integer \ell
```

Output: All subgroups $H \subset E$ of order ℓ .

Complexity: $\tilde{\mathcal{O}}(\ell^2)$ – Elkies 1992

- Why? List all isogenies of given degree;
 - Count points of elliptic curves;
 - Compute endomorphism rings of elliptic curves;
 - Walk in isogeny graphs.

Explicit Isogeny Problem (2)

Input: Curves E, E', isogenous of degree ℓ .

Output: The isogeny $\phi : E \to E'$ of degree ℓ .

Complexity: *O*(ℓ²) − Elkies 1992; Couveignes 1996; Lercier and Sirvent 2008; De Feo 2011; De Feo, Hugounenq, Plût, and Schost 2016; Lairez and Vaccon 2016, ...

Why? • Count points of elliptic curves.

Explicit Isogeny Problem (2)

Input: Curves E, E', isogenous of degree ℓ .

Output: The isogeny $\phi : E \to E'$ of degree ℓ .

Complexity: O(ℓ²) — Elkies 1992; Couveignes 1996; Lercier and Sirvent 2008; De Feo 2011; De Feo, Hugounenq, Plût, and Schost 2016; Lairez and Vaccon 2016, ...

Why? • Count points of elliptic curves.

Isogeny Walk Problem

Input: Isogenous curves E, E'.

Output: An isogeny $\phi: E \to E'$ of smooth degree.

Complexity: Generically hard – Galbraith, Hess, and Smart 2002, ...

- Why? Cryptanalysis (ECC);
 - Foundational problem for isogeny-based cryptography.

Random walks and hash functions (circa 2006)

Any expander graph gives rise to a hash function.

- Fix a starting vertex v;
- The value to be hashed determines a random path to v';
- v' is the hash.

(Charles, K. E. Lauter, and Goren 2009) hash function (CGL)

- Use the expander graph of supersingular 2-isogenies;
- Collision resistance
 2nd preimage resistance
 = hardness of finding cycles in the graph;
- Preimage resistance = hardness of finding a path from v to v'.

Hardness of CGL

Finding cycles

- Analogous to finding endomorphisms...
- ... very bad idea to start from a curve with known endomorphism ring!
- Translation algorithm: elements of B_{p,∞} ↔ isogeny loops Doable in polylog(p).^a

^{*a*}Kohel, K. Lauter, Petit, and Tignol 2014; Eisenträger, Hallgren, K. Lauter, Morrison, and Petit 2018.

Finding paths E ightarrow E'

- Analogous to finding connecting ideals between two maximal orders $\mathcal{O}, \mathcal{O}'$ (i.e. a left ideal $I \subset \mathcal{O}$ that is a right ideal of \mathcal{O}').
- Poly-time equivalent to computing $\operatorname{End}(E)$ and $\operatorname{End}(E')$.^{*a*}
- Best known algorithm to compute End(E) takes poly(p).^b

^{*a*}Eisenträger, Hallgren, K. Lauter, Morrison, and Petit 2018. ^{*b*}Kohel 1996; Cerviño 2004.

Luca De Feo (U Paris Saclay)

Let $G = \langle g \rangle$ be a cyclic group of order p.

Luca De Feo (U Paris Saclay)

Jul 29-Aug 2, 2019 — Würzburg 66 / 82

The Schreier graph of $(S, G \setminus \{1\})$ is (usually) an expander.

Public parameters:

- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.

q

- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;

- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;
- Bob does the same;

- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;
- Bob does the same;
- 3 They publish g_A and g_B ;

- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;
- Bob does the same;
- They publish g_A and g_B;
- Alice repeats her secret walk s_A starting from g_B.

- A group $G = \langle g \rangle$ of order p;
- A subset $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$.
- Alice takes a secret random walk $s_A : g \to g_A$ of length $O(\log p)$;
- Bob does the same;
- 3 They publish g_A and g_B ;
- Alice repeats her secret walk s_A starting from g_B.
- Solution Secret walk SB starting from gA.
Key exchange from Schreier graphs

Why does this work?

$$egin{aligned} g_A &= g^{2\cdot 3\cdot 2\cdot 5},\ g_B &= g^{3^2\cdot 5\cdot 2},\ g_{BA} &= g_{AB} &= g^{2^3\cdot 3^3\cdot 5^2}; \end{aligned}$$

and g_A , g_B , g_{AB} are uniformly distributed in G...

Key exchange from Schreier graphs

Why does this work?

$$egin{aligned} g_A &= g^{2\cdot 3\cdot 2\cdot 5},\ g_B &= g^{3^2\cdot 5\cdot 2},\ g_{BA} &= g_{AB} &= g^{2^3\cdot 3^3\cdot 5^2}; \end{aligned}$$

and g_A , g_B , g_{AB} are uniformly distributed in G...

...Indeed, this is just a twisted presentation of the classical Diffie-Hellman protocol!

Key exchange in graphs of ordinary isogenies³ (CRS) Parameters:

- E/\mathbb{F}_p ordinary elliptic curve, with Frobenius endomorphism $\pi \in \mathcal{O}$.
- (small) primes ℓ_1, ℓ_2, \dots such that $\left(\frac{D_{\pi}}{\ell_i}\right) = 1$.
- elements $\mathfrak{f}_1 = (\ell_1, \pi \lambda_1), \mathfrak{f}_2 = (\ell_2, \pi \lambda_2), \dots$ in $\mathrm{Cl}(\mathcal{O})$.

Secret data: Random walks $\mathfrak{a}, \mathfrak{b} \in Cl(\mathcal{O})$ in the isogeny graph.

³Couveignes 2006; Rostovtsev and Stolbunov 2006.

Computing the action of $\operatorname{Cl}(\mathcal{O})$

Input: An ideal class $\mathfrak{a} = \mathfrak{f}_1^{a_1} \mathfrak{f}_2^{a_2} \cdots$.

Output: The elliptic curve $\mathfrak{a} * E$.

Algorithm: Let $\mathfrak{f}^n = (\ell, \pi - \lambda)^n$, repeat n times:

- Use Elkies' algorithm to find all (two) curves isogenous to E of degree ℓ,
- Choose the one such that $\ker \phi \subset \ker(\pi \lambda)$.

Parameters size / performance

Adversary goal: Given E, $\mathfrak{a} * E$, find \mathfrak{a} ;

Graph size: $\# \operatorname{Cl}(\mathcal{O}) \approx \sqrt{p}$;

Best (classical) attack: Meet-in-the-middle / Random-walk in $\sqrt{\# \operatorname{Cl}(\mathcal{O})}$;

For 2^{128} security: choose log $p \sim 512$;

Time to evaluate the isogeny action^{*a*}: Dozens of minutes!

^{*a*}De Feo, Kieffer, and Smith 2018.

Vélu to the rescue?

Input: An ideal class $\mathfrak{a} = \mathfrak{f}_1^{a_1} \mathfrak{f}_2^{a_2} \cdots$.

Output: The elliptic curve $\mathfrak{a} * E$.

Algorithm: Let $\mathfrak{f}^n = (\ell, \pi - \lambda)^n$. Why not:

- Presciently find $H = E[\ell] \cap \ker(\pi \lambda)$,
- Apply Vélu's formulas to *H*.

Speeding up the class group action

Problem: *H* must be in $E(\mathbb{F}_p)$ for Vélu's formulas to be efficient.

$$\begin{array}{ll} \mathsf{Idea}^a \text{: Force} \begin{cases} p = -1 & \mod \ell, \\ \lambda = 1 & \mod \ell, \\ & \mathsf{so that} \ E[\ell] = H \subset E(\mathbb{F}_p). \end{array} \end{array}$$

^{*a*}De Feo, Kieffer, and Smith 2018.

Luca De Feo (U Paris Saclay)

Vélu to the rescue?

Input: An ideal class $\mathfrak{a} = \mathfrak{f}_1^{a_1} \mathfrak{f}_2^{a_2} \cdots$.

Output: The elliptic curve $\mathfrak{a} * E$.

Algorithm: Let $\mathfrak{f}^n = (\ell, \pi - \lambda)^n$. Why not:

- Presciently find $H = E[\ell] \cap \ker(\pi \lambda)$,
- Apply Vélu's formulas to *H*.

Speeding up the class group action Problem: H must be in $E(\mathbb{F}_p)$ for Vélu's formulas to be efficient. Idea^{*a*}: Force $\begin{cases} p = -1 \mod \ell, \\ \lambda = 1 \mod \ell, \\ \text{so that } E[\ell] = H \subset E(\mathbb{F}_p). \end{cases}$ How to waste an internship: Forcing $\lambda =$ Forcing #E = Very hard!

^{*a*}De Feo, Kieffer, and Smith 2018.

Luca De Feo (U Paris Saclay)

Isogeny graphs in cryptography

Vélu to the rescue?

Input: An ideal class $\mathfrak{a} = \mathfrak{f}_1^{a_1} \mathfrak{f}_2^{a_2} \cdots$.

Output: The elliptic curve $\mathfrak{a} * E$.

Algorithm: Let $\mathfrak{f}^n = (\ell, \pi - \lambda)^n$. Why not:

- Presciently find $H = E[\ell] \cap \ker(\pi \lambda)$,
- Apply Vélu's formulas to *H*.

Speeding up the class group action

Problem: *H* must be in $E(\mathbb{F}_p)$ for Vélu's formulas to be efficient.

$$\mathsf{dea}^a\colon \mathsf{Force}egin{cases} p=-1 \mod \ell,\ \lambda=1 \mod \ell,\ \mathsf{so that}\ E[\ell]=H\subset E(\mathbb{F}_p). \end{cases}$$

How to waste an internship: Forcing $\lambda =$ Forcing #E = Very hard!

Time to evaluate the isogeny action: Still 5 minutes!

^{*a*}De Feo, Kieffer, and Smith 2018.

Luca De Feo (U Paris Saclay)

Supersingular to the rescue!

For all supersingular curves defined over \mathbb{F}_p ,

$$\pi = egin{pmatrix} \sqrt{-p} & 0 \ 0 & -\sqrt{-p} \end{pmatrix} \mod \ell$$

CSIDH (pron.: Seaside)

Choose $p = -1 \mod \ell$ for many primes ℓ ;

Hence, $\lambda = 1 \mod \ell$. Win!

Performance: Same security as CRS in less than 50ms!^a

^{*a*}Castryck, Lange, Martindale, Panny, and Renes 2018.

Quantum security

Fact: Shor's algorithm does not apply to Diffie-Hellman protocols from group actions.

Subexponential attack

 $\exp(\sqrt{\log p \log \log p})$

- Reduction to the hidden shift problem by evaluating the class group action in quantum supersposition^{*a*} (subexpoential cost);
- Well known reduction from the hidden shift to the dihedral (non-abelian) hidden subgroup problem;
- Kuperberg's algorithm^b solves the dHSP with a subexponential number of class group evaluations.
- Recent work^c suggests that 2^{64} -qbit security is achieved somewhere in 512 $< \log p < 1024$.

^{*a*}Childs, Jao, and Soukharev 2014.

^bKuperberg 2005; Regev 2004; Kuperberg 2013.

^cBonnetain and Naya-Plasencia 2018; Bonnetain and Schrottenloher 2018; Biasse, Jacobson Jr, and Iezzi 2018; Jao, LeGrow, Leonardi, and Ruiz-Lopez 2018; Bernstein, Lange, Martindale, and Panny 2018.

Luca De Feo (U Paris Saclay)

Isogeny graphs in cryptography

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

- Fix small primes ℓ_A , ℓ_B ;
- No canonical labeling of the ℓ_A and ℓ_B -isogeny graphs; however...

Supersingular Isogeny Diffie-Hellman⁴

Parameters:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$
- $E[\boldsymbol{\ell}_B^b] = \langle P_B, Q_B \rangle.$

Secret data:

- $R_A = m_A P_A + n_A Q_A$,
- $R_B = m_B P_B + n_B Q_B$,

⁴Jao and De Feo 2011; De Feo, Jao, and Plût 2014.

Isogeny graphs in cryptography

Supersingular Isogeny Diffie-Hellman⁴

Parameters:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$
- $E[\ell_B^b] = \langle P_B, Q_B \rangle$. Secret data:
 - $R_A = m_A P_A + n_A Q_A$,
 - $R_B = m_B P_B + n_B Q_B$,

⁴Jao and De Feo 2011; De Feo, Jao, and Plût 2014.

Supersingular Isogeny Diffie-Hellman⁴

Parameters:

- Prime p such that $p + 1 = \ell_A^a \ell_B^b$;
- Supersingular curve $E \simeq (\mathbb{Z}/(p+1)\mathbb{Z})^2;$
- $E[\ell_A^a] = \langle P_A, Q_A \rangle;$
- $E[\ell_B^b] = \langle P_B, Q_B \rangle$. Secret data:
 - $R_A = m_A P_A + n_A Q_A$,
 - $R_B = m_B P_B + n_B Q_B$,

⁴Jao and De Feo 2011; De Feo, Jao, and Plût 2014.

Isogeny graphs in cryptography

Couveignes' key exchange

Luca De Feo (U Paris Saclay)

Luca De Feo (U Paris Saclay)

Jul 29-Aug 2, 2019 — Würzburg 76 / 82

Luca De Feo (U Paris Saclay)

Generic attacks

Problem: Given E, E', isogenous of degree ℓ^n , find $\phi: E \to E'$.

- With high probability ϕ is the unique collision (or *claw*) $O(\ell^{n/2})$.
- A quantum claw finding⁵ algorithm solves the problem in $O(\ell^{n/3})$.

⁵Tani 2009.

Luca De Feo (U Paris Saclay)

Security

The SIDH problem

Given *E*, Alice's public data $E/\langle R_A \rangle$, $\phi(P_B)$, $\phi(Q_B)$, and Bob's public data $E/\langle R_B \rangle$, $\psi(P_A)$, $\psi(Q_A)$, find the shared secret $E/\langle R_A, R_B \rangle$.

Under the SIDH assumption:

- The SIDH key exchange protocol is session-key secure.
- The derived El Gamal-type PKE is CPA secure.

Reductions

- SIDH → Isogeny Walk Problem;
- SIDH \rightarrow Computing the endomorphism rings of E and $E/\langle R_A \rangle$.^{*a*}

^aKohel, K. Lauter, Petit, and Tignol 2014; Galbraith, Petit, Shani, and Ti 2016.

Chosen ciphertext attack⁶

For simplicity, assume Alice's prime is $\ell = 2$.

Evil Bob

- Alice has a long-term secret $R = mP + nQ \in E[2^e]$;
- Bob produces an ephemeral secret ψ ;
- Bob sends to Alice $\psi(P), \psi(Q + 2^{e-1}P);$
- Alice computes the shared secret correctly iff

 $egin{aligned} R &= mP + nQ \ &= mP + nQ + n2^{e-1}P, \end{aligned}$

i.e., iff *n* is even;

• Bob learns one bit of the secret key by checking that Alice gets the right shared secret.

- Bob repeats the queries in a similar fashion, learning one bit per query.
- Detecting Bob's faulty key seems to be as hard as breaking SIDH. ⁶Galbraith, Petit, Shani, and Ti 2016.

Luca De Feo (U Paris Saclay)

Isogeny graphs in cryptography

CSIDH vs SIDH

	CSIDH	SIDH	
Speed (NIST 1)	\sim 70ms	\sim 7ms	
Public key size (NIST 1)	64B	346B	
Key compression			
↓ speed		\sim 13ms	
→ size		209B	
Constant time impl.	$2 \times$ slower	ok	
Submitted to NIST	no	yes	
Best classical attack	$p^{1/4}$	$p^{1/4}(p^{3/8})$	
Best quantum attack	$\tilde{\mathcal{O}}\left(3^{\sqrt{\log_3 p}}\right)$	$p^{1/6}(p^{3/8})$	
Key size scales	quadratically	linearly	
Security assumption	isogeny walk problem	ad hoc	
CPA security	yes	yes	
CCA security	yes	Fujisaki-Okamoto	
Non-interactive key ex.	yes	no	
Signatures	short but slooow!	big and slow	

SIKE: Supersingular Isogeny Key Encapsulation

• Submission to the NIST PQ competition:

SIKE.PKE: El Gamal-type system with IND-CPA security proof, SIKE.KEM: generically transformed system with IND-CCA security proof.

- NIST security levels 1, 2, 3 and 5.
- Smallest communication complexity among all proposals in each level.
- Slowest among all benchmarked proposals in each level.
- A team of 15 submitters, from 8 universities and companies.

• Head to https://sike.org.

	p	cl. security	NIST cat.	speed	comm.
SIKEp434	$2^{216}3^{137} - 1$	128 bits	1	7ms	346 B
SIKEp503	$2^{250}3^{159} - 1$	152 bits	2	10ms	402 B
SIKEp610	$2^{305}3^{192} - 1$	189 bits	3	19ms	486 B
SIKEp751	$2^{372}3^{239} - 1$	256 bits	5	29ms	596 B

