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Projective space
Definition (Projective space)
Let �k an algebraically closed field, the projective space Pn(�k) is the set of
non-null (n + 1)-tuples (x0; : : : ; xn) 2 �kn modulo the equivalence relation

(x0; : : : ; xn) � (�x0; : : : ; �xn) with � 2 �k n f0g:

A class is denoted by (x0 : � � � : xn).
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Weierstrass equations

Let k be a field of
characteristic 6= 2; 3.
An elliptic curve defined over
k is the locus in P2(�k) of an
equation

Y 2Z = X 3 + aXZ 2 + bZ 3;

where a ; b 2 k and
4a3 + 27b2 6= 0.

O = (0 : 1 : 0) is the
point at infinity;
y2 = x 3 + ax + b is the
a�ine equation.
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The group law

Bezout’s theorem
Every line cutsE in exactly
three points (counted with
multiplicity).

Define a group law such that
any three colinear points add
up to zero.

The law is algebraic
(it has formulas);
The law is commutative;
O is the group identity;
Opposite points have the
same x -value.

P

Q

R

P +Q
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Group structure

Torsion structure
LetE be defined over an algebraically closed field �k of characteristic p.

E [m ] ' Z=mZ� Z=mZ if p - m ,

Z=peZ ordinary case,
E [pe ] '

(
fOg supersingular case.

Free part
LetE be defined over a number field k , the group of k -rational pointsE(k)
is finitely generated.

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Jul 29–Aug 2, 2019 —Würzburg 6 / 82



Maps: isomorphisms

Isomorphisms
The only invertible algebraic maps between elliptic curves are of the form

(x ; y) 7! (u2x ;u3y)

for some u 2 �k .
They are group isomorphisms.

j -Invariant
LetE : y2 = x 3 + ax + b, its j -invariant is

j (E) = 1728
4a3

4a3 + 27b2 :

Two elliptic curvesE ;E 0 are isomorphic if and only if j (E) = j (E 0).
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Maps: isogenies
Theorem
Let � : E ! E 0 be amap between elliptic curves. These conditions are
equivalent:

� is a surjective groupmorphism,
� is a groupmorphismwith finite kernel,
� is a non-constant algebraic map of projective varieties sending the
point at infinity ofE onto the point at infinity ofE 0.

If they hold � is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m
On any curve, an isogeny fromE to itself (i.e., an endomorphism):

[m ] : E ! E ;
P 7! [m ]P :
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Isogenies: an example over F11

E : y2 = x 3 + x E 0 : y2 = x 3 � 4x

�(x ; y) =

 
x 2 + 1

x
; y

x 2 � 1
x 2

!

Kernel generator in red.
This is a degree 2map.
Analogous to x 7! x 2 in F�q .
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Curves over finite fields

Frobenius endomorphism
LetE be defined over Fq . The Frobenius endomorphism ofE is the map

� : (X : Y : Z ) 7! (X q : Y q : Z q):

Hasse’s theorem
LetE be defined over Fq , then

j#E(k)� q � 1j � 2
p

q :

Serre-Tate theorem
Two elliptic curvesE ;E 0 defined over a finite field k are isogenous over k if
and only if#E(k) = #E 0(k).
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Complex tori

C=�

!1

!2

ab

a + b

a + b

Let !1; !2 2 C
be linearly
independent
complex
numbers. Set

� = !1Z� !2Z

C=� is a
complex torus.
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Complex tori

C=�

!1

!2

ab

a + b

a + b

Addition law
induced by
addition onC.
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Homotheties

a

Two lattices are
homothetic if
there exist � 2 C
such that

��1 = �2
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The j -invariant
Wewant to classify complex lattices/tori up to homothety.

Eisenstein series
Let� be a complex lattice. For any integer k > 0 define

G2k (�) =
X

!2�nf0g
!�2k :

Also set
g2(�) = 60G4(�); g3(�) = 140G6(�):

Modular j -invariant
Let� be a complex lattice, the modular j -invariant is

j (�) = 1728
g2(�)

3

g2(�)3 � 27g3(�)2
:

Two lattices�;�0 are homothetic if and only if j (�) = j (�0).
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Elliptic curves overC

Weierstrass } function
Let� be a complex lattice, the Weierstrass } function associated to� is the
series

}(z ; �) =
1
z 2 +

X
!2�nf0g

�
1

(z � !)2 �
1
!2

�
:

Fix a lattice�, then } and its derivative }0 are elliptic functions:

}(z + !) = }(z ); }0(z + !) = }0(z )

for all ! 2 �.

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Jul 29–Aug 2, 2019 —Würzburg 14 / 82



Uniformization theorem
Let� be a complex lattice. The curve

E : y2 = 4x 3�g2(�)x�g3(�)

is an elliptic curve overC. The map

C=�! E(C);

0 7! (0 : 1 : 0);
z 7! (}(z ) : }0(z ) : 1)

is an isomorphism of Riemann surfaces and a groupmorphism.
Conversely, for any elliptic curve

E : y2 = x 3 + ax + b

there is a unique complex lattice� such that

g2(�) = �4a ; g3(�) = �4b:

Moreover j (�) = j (E).
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Multiplication

a

[3]a

[3]a
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Torsion subgroups

a

b

The `-torsion
subgroup is made
up by the points�

i!1

`
;
j!2

`

�

It is a group of
rank two

E [`] = ha ; bi
' (Z=`Z)2
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Isogenies

a

b

p

p

p

Let a 2 C=�1 be
an `-torsion point,
and let

�2 = aZ� �1

Then�1 � �2 and
we define a degree
` cover

� : C=�1 ! C=�2

� is a morphism of
complex Lie
groups and is
called an isogeny.
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Isogenies

a

b

p

p

p

Taking a point b
not in the kernel of
�, we obtain a new
degree ` cover

�̂ : C=�2 ! C=�3

The composition
�̂ � � has degree `2
and is homothetic
to the
multiplication by `
map.
�̂ is called the dual
isogeny of �.
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Isogenies: back to algebra
Let � : E ! E 0 be an isogeny defined over a field k of characteristic p.

k(E) is the field of all rational functions fromE to k ;
��k(E 0) is the subfield of k(E) defined as

��k(E 0) = ff � � j f 2 k(E 0)g:

Degree, separability
1 The degree of � is deg � = [k(E) : ��k(E 0)]. It is always finite.
2 � is said to be separable, inseparable, or purely inseparable if the
extension of function fields is.

3 If � is separable, then deg � = #ker�.
4 If � is purely inseparable, then ker� = fOg and deg � is a power of p.
5 Any isogeny can be decomposed as a product of a separable and a
purely inseparable isogeny.
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Isogenies: separable vs inseparable

Purely inseparable isogenies
Examples:

The Frobenius endomorphism is purely inseparable of degree q .
All purely inseparable maps in characteristic p are of the form
(X : Y : Z ) 7! (X pe

: Y pe
: Z pe

).

Separable isogenies
LetE be an elliptic curve, and letG be a finite subgroup ofE . There are a
unique elliptic curveE 0 and a unique separable isogeny �, such that
ker� = G and � : E ! E 0.
The curveE 0 is called the quotient ofE byG and is denoted byE=G .
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The dual isogeny

Let � : E ! E 0 be an isogeny of degreem . There is a unique isogeny
�̂ : E 0 ! E such that

�̂ � � = [m ]E ; � � �̂ = [m ]E 0 :

�̂ is called the dual isogeny of �; it has the following properties:
1 �̂ is defined over k if and only if � is;
2 [ � � = �̂ �  ̂ for any isogeny : E 0 ! E 00;
3 \ + � =  ̂ + �̂ for any isogeny : E ! E 0;
4 deg � = deg �̂;
5 ^̂� = �.
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Algebras, orders
A quadratic imaginary number field is an extension ofQ of the form
Q [
p�D ] for some non-squareD > 0.

A quaternion algebra is an algebra of the formQ+ �Q+ �Q+ ��Q,
where the generators satisfy the relations

�2; �2 2 Q; �2 < 0; �2 < 0; �� = ���:

Orders
LetK be a finitely generatedQ-algebra. An orderO � K is a subring ofK
that is a finitely generatedZ-module of maximal dimension. An order that is
not contained in any other order ofK is called a maximal order.

Examples:
Z is the only order contained inQ,
Z[i ] is the only maximal order ofQ(i),
Z[
p

5] is a non-maximal order ofQ(
p

5),
The ring of integers of a number field is its only maximal order,
In general, maximal orders in quaternion algebras are not unique.
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The endomorphism ring

The endomorphism ringEnd(E) of an elliptic curveE is the ring of all
isogeniesE ! E (plus the null map) with addition and composition.

Theorem (Deuring)
LetE be an elliptic curve defined over a field k of characteristic p.
End(E) is isomorphic to one of the following:

Z, only if p = 0
E is ordinary.

An orderO in a quadratic imaginary field:
E is ordinary with complex multiplication byO.

Only if p > 0, a maximal order in a quaternion algebraa:
E is supersingular.

a(ramified at p and1)
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The finite field case

Theorem (Hasse)
LetE be defined over a finite field. Its Frobenius endomorphism � satisfies
a quadratic equation

�2 � t� + q = 0

inEnd(E) for some jt j � 2
p

q , called the trace of �. The trace t is coprime
to q if and only ifE is ordinary.

SupposeE is ordinary, thenD� = t2 � 4q < 0 is the discriminant of Z[�].
K = Q(�) = Q(

p
D�) is the endomorphism algebra ofE .

Denote byOK its ring of integers, then

Z 6= Z[�] � End(E) � OK :

In the supersingular case, �may or may not be inZ, depending on q .
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Endomorphism rings of ordinary curves
Classifying quadratic orders
LetK be a quadratic number field, and letOK be its ring of integers.

Any orderO � K can be written asO = Z+ fOK for an integer f ,
called the conductor ofO, denoted by [Ok : O].
If dK is the discriminant ofK , the discriminant ofO is f 2dK .
IfO;O0 are two orders with discriminants d ; d 0, thenO � O0 i� d 0jd .

OK

Z+ 2OK Z+ 3OK Z+ 5OK

Z+ 6OK Z+ 10OK Z+ 15OK

Z[�] ' Z+ 30OK
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Ideal lattices

Fractional ideals
LetO be an order of a number fieldK . A (fractional)O-ideal a is a finitely
generated non-zeroO-submodule ofK .

WhenK is imaginary quadratic:
Fractional ideals are complex lattices,
Any lattice� � K is a fractional ideal,
The order of a lattice� is

O� = f� 2 K j �� � �g

Complex multiplication
Let� � K , the elliptic curve associated toC=� has complex multiplication
byO�.
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The class group

LetEnd(E) = O � Q(p�D). Define
I(O), the group of invertible fractional ideals,
P(O), the group of principal ideals,

The class group
The class group ofO is

Cl(O) = I(O)=P(O):

It is a finite abelian group.
Its order h(O) is called the class number ofO.
It arises as the Galois group of an abelian extension ofQ(

p�D).
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Complex multiplication

Fundamental theorem of CM
LetO be an order of a number fieldK , and let a1; : : : ; ah(O) be
representatives ofCl(O). Then:

K (j (ai )) is an Abelian extension ofK ;
The j (ai ) are all conjugate overK ;
The Galois group ofK (j (ai )) is isomorphic toCl(O);
[Q(j (ai )) : Q] = [K (j (ai )) : K ] = h(O);
The j (ai ) are integral, their minimal polynomial is called the Hilbert
class polynomial ofO.
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Li�ing

Deuring’s li�ing theorem
LetE0 be an elliptic curve in characteristic p, with an endomorphism !o
which is not trivial. Then there exists an elliptic curveE defined over a
number fieldL, an endomorphism ! ofE , and a non-singular reduction of
E at a place p ofL lying above p, such thatE0 is isomorphic toE(p), and !0
corresponds to !(p) under the isomorphism.
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Executive summary

Elliptic curves are algebraic groups;
Isogenies are the natural notion of morphism for EC: both group and
projective variety morphism;
We can understandmost things about isogenies by looking only at
endomorphisms;
Isogenies of curves overC are especially simple to describe;
It is easy to construct curves overCwith prescribed complex
multiplication;
Most of what happens in positive characteristic can be understood by:
I looking at the Frobenius endomorphism, and/or
I looking at reductions of curves in characteristic 0.
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Plan

1 Elliptic curves, isogenies, complex multiplication

2 Isogeny graphs

3 Key exchange
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Isogeny graphs

Serre-Tate theorem reloaded
Two elliptic curvesE ;E 0 defined over a finite field are isogenous i� their
endomorphism algebrasEnd(E)
Q andEnd(E 0)
Q are isomorphic.

Isogeny graphs
Vertices are curves up to
isomorphism,
Edges are isogenies up to
isomorphism.

Isogeny volcanoes
Curves are ordinary,
Isogenies all have degree a
prime `.
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What do isogeny graphs look like?

Torsion subgroups (` prime)
In an algebraically closed field:

E [`] = hP ;Qi ' (Z=`Z)2

+
There are exactly `+ 1 cyclic
subgroupsH � E of order `:

hP +Qi; hP + 2Qi; : : : ; hPi; hQi

+
There are exactly `+ 1 distinct
isogenies of degree `. (non-CM) 2-isogeny graph overC
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What happens over a finite field Fp?

Rational isogenies (` 6= p)
In the algebraic closure �Fp

E [`] = hP ;Qi ' (Z=`Z)2

However, an isogeny is defined over Fp only if its kernel is Galois invariant.

Enter the Frobenius map

� : E �! E
(x ; y) 7�! (x p ; yp)

E is seen here as a curve over �Fp .

The Frobenius action onE [`]

�(P) =

�(Q) =

aP + bQ

cP + dQ

 !
� : mod `

We identify �jE [`] to a conjugacy
class inGL(Z=`Z).
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What happens over a finite field Fp?

Galois invariant subgroups ofE [`]
=

eigenspaces of � 2 GL(Z=`Z)
=

rational isogenies of degree `

Howmany Galois invariant subgroups?
�jE [`] � � � 0

0 �
� ! `+ 1 isogenies

�jE [`] �
�
� 0
0 �

�
with � 6= � ! two isogenies

�jE [`] � � � �
0 �
� ! one isogeny

�jE [`] is not diagonalizable overZ=`Z ! no isogeny
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Volcanology (Kohel 1996)
LetE ;E 0 be curves with respective
endomorphism ringsO;O0 � K .
Let � : E ! E 0 be an isogeny of
prime degree `, then:

ifO = O0, � is horizontal;
if [O0 : O] = `, � is ascending;
if [O : O0] = `, � is descending.

End(E)

OK

Z[�]

Ordinary isogeny volcano of degree ` = 3.
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Volcanology (Kohel 1996)

LetE be ordinary,
End(E) � K .

OK : maximal order ofK ,
DK : discriminant ofK .

Height= v`([OK : Z[�]]).

How large is the crater?

�DK
`

�
= �1

�DK
`

�
= 0

�DK
`

�
= +1

Horizontal Ascending Descending
` - [OK : O]] ` - [O : Z[�]] 1 +

�
DK
`

�
` - [OK : O]] ` j [O : Z[�]] 1 +

�
DK
`

�
`�

�
DK
`

�
` j [OK : O]] ` j [O : Z[�]] 1 `
` j [OK : O]] ` - [O : Z[�]] 1
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How large is the crater of a volcano?

LetEnd(E) = O � Q(p�D). Define
I(O), the group of invertible fractional ideals,
P(O), the group of principal ideals,

The class group
The class group ofO is

Cl(O) = I(O)=P(O):

It is a finite abelian group.
Its order h(O) is called the class number ofO.
It arises as the Galois group of an abelian extension ofQ(

p�D).
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Complex multiplication
The a-torsion

Let a � O be an (integral invertible) ideal ofO;
LetE [a] be the subgroup ofE annihilated by a:

E [a] = fP 2 E j �(P) = 0 for all � 2 ag;
Let � : E ! Ea, whereEa = E=E [a].

ThenEnd(Ea) = O (i.e., � is horizontal).

Theorem (Complex multiplication)
The action on the set of elliptic curves with complex multiplication byO
defined by a � j (E) = j (Ea) factors throughCl(O), is faithful and transitive.

Corollary

LetEnd(E) have discriminantD . Assume that
�

D
`

�
= 1, thenE is on a

crater of sizeN of an `-volcano, andN jh(End(E))
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Complex multiplication graphs

E1

E2

E3
E4

E5

E6

E7

E8
E9

E10

E11

E12

Vertices are elliptic
curves with complex
multiplication by OK
(i.e., End(E) ' OK �
Q(
p�D)).

Edges are horizontal
isogenies of bounded
prime degree.

degree 2

degree 3

degree 5

Isomorphic to a Cayley
graph ofCl(OK ).
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Supersingular endomorphisms

Recall, a curveE over a field Fq of characteristic p is supersingular i�

�2 � t� + q = 0

with t = 0 mod p.

Case: t = 0 ) D� = �4q
Only possibility forE=Fp ,
E=Fp has CM by an order ofQ(

p�p), similar to the ordinary case.

Case: t = �2
p

q ) D� = 0

General case forE=Fq , when q is an even power.
� = �pq , hence no complex multiplication.

We will ignore marginal cases: t = �pq ;�p2q ;�p3q .
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Supersingular complex multiplication
LetE=Fp be a supersingular curve, then �2 = �p, and

� =
�p�p 0

0 �p�p

�
mod `

for any ` s.t.
��p
`

�
= 1.

Theorem (Delfs and Galbraith 2016)
LetEndFp (E) denote the ring of Fp-rational endomorphisms ofE . Then

Z[�] � EndFp (E) � Q(p�p):

Orders ofQ(
p�p)

If p = 1 mod 4, thenZ[�] is the maximal order.
If p = �1 mod 4, thenZ[�+1

2 ] is the maximal order,
and [Z[�+1

2 ] : Z[�]] = 2.
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Supersingular CM graphs

2-volcanoes, p = �1 mod 4

Z[�+1
2 ]

Z[�]

2-graphs, p = 1 mod 4

Z[�]

All other `-graphs are cycles of horizontal isogenies i�
��p
`

�
= 1.

Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Jul 29–Aug 2, 2019 —Würzburg 43 / 82



The full endomorphism ring

Theorem (Deuring)
LetE be a supersingular elliptic curve, then

E is isomorphic to a curve defined over Fp2 ;
Every isogeny ofE is defined over Fp2 ;
Every endomorphism ofE is defined over Fp2 ;
End(E) is isomorphic to a maximal order in a quaternion algebra
ramified at p and1.

In particular:
IfE is defined over Fp , thenEndFp (E) is strictly contained inEnd(E).
Some endomorphisms do not commute!
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An example

The curve of j -invariant 1728

E : y2 = x 3 + x

is supersingular over Fp i� p = �1 mod 4.

Endomorphisms
End(E) = Zh�; �i, with:

� the Frobenius endomorphism, s.t. �2 = �p;
� the map

�(x ; y) = (�x ; iy);

where i 2 Fp2 is a 4-th root of unity. Clearly, �2 = �1.
And �� = ���.
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Class group action party

j = 1728

Cl(�4p)

Cl(�4)
j = 0Cl(�3)

Cl(�23)

Cl(�79)
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Quaternion algebra?! WTF?2

The quaternion algebraBp;1 is:
A 4-dimensionalQ-vector space with basis (1; i ; j ; k).
A non-commutative division algebra1 Bp;1 = Qhi ; j iwith the
relations:

i2 = a ; j 2 = �p; ij = �ji = k ;

for some a < 0 (depending on p).
All elements ofBp;1 are quadratic algebraic numbers.
Bp;1 
Q` 'M2�2(Q`) for all ` 6= p.
I.e., endomorphisms restricted toE [`e ] are just 2� 2matrices mod`e .
Bp;1 
 R is isomorphic to Hamilton’s quaternions.
Bp;1 
Qp is a division algebra.

1All elements have inverses.
2What The Field?
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Supersingular graphs

Quaternion algebras have many
maximal orders.
For every maximal order type ofBp;1
there are 1 or 2 curves over Fp2 having
endomorphism ring isomorphic to it.
There is a unique isogeny class of
supersingular curves over �Fp of size
� p=12.
Le� ideals act on the set of maximal
orders like isogenies.
The graph of `-isogenies is
(`+ 1)-regular.

Figure: 3-isogeny graph on F972 .
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Graphs lexicon

Degree: Number of (outgoing/ingoing) edges.
k -regular: All vertices have degree k .
Connected: There is a path between any two vertices.
Distance: The length of the shortest path between two vertices.
Diamater: The longest distance between two vertices.

�1 � � � � � �n : The (ordered) eigenvalues of the adjacency matrix.
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Expander graphs

Proposition
IfG is a k -regular graph, its largest and smallest eigenvalues satisfy

k = �1 � �n � �k :

Expander families
An infinite family of connected k -regular graphs on n vertices is an
expander family if there exists an � > 0 such that all non-trivial eigenvalues
satisfy j�j � (1� �)k for n large enough.

Expander graphs have short diameter (O(logn));
Randomwalks mix rapidly (a�erO(logn) steps, the induced
distribution on the vertices is close to uniform).
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Expander graphs from isogenies

Theorem (Pizer 1990, 1998)
Let ` be fixed. The family of graphs of supersingular curves over Fp2 with
`-isogenies, as p !1, is an expander familya.

aEven better, it has the Ramanujan property.

Theorem (Jao, Miller, and Venkatesan 2009)
LetO � Q(p�D) be an order in a quadratic imaginary field. The graphs of
all curves over Fq with complex multiplication byO, with isogenies of prime
degree boundeda by (log q)2+� , are expanders.

aMay contain traces of GRH.
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Executive summary

Separable `-isogeny = finite kernel = subgroup ofE [`],
I eigenspace of � i� Fq -rational,
I distinct eigenvalues � 6= � define distinct directions on the crater.

Isogeny graphs have j -invariants for vertices and “some” isogenies for
edges.
By varying the choices for the vertex and the isogeny set, we obtain
graphs with di�erent properties.
`-isogeny graphs of ordinary curves are volcanoes, (full) `-isogeny
graphs of supersingular curves are finite (`+ 1)-regular.
CM theory naturally leads to define graphs of horizontal isogenies
(both in the ordinary and the supersingular case) that are isomorphic
to Cayley graphs of class groups.
CM graphs are expanders. Supseringular full `-isogeny graphs are
Ramanujan.
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Plan

1 Elliptic curves, isogenies, complex multiplication

2 Isogeny graphs

3 Key exchange
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Isogeny graphs taxonomy
Complex Multiplication (CM) graphs

Ordinary / Supersingular (Fp)
Superposition of isogeny cycles
(one color per degree)
Isomorphic to Cayley graph of a
quadratic class group
Large automorphism group
Typical sizeO(

p
p)

Used in: CSIDH

Full supersingular graphs

Supersingular (Fp2 )
One isogeny degree
(`+ 1)-regular
Tiny automorphism group
Size� p=12
Used in: SIDH
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Di�ie–Hellman key exchange

Goal: Alice and Bob have never met before. They are chatting over a
public channel, and want to agree on a shared secret to start a
private conversation.

Setup: They agree on a (large) cyclic groupG = hgi of orderN .

Alice Bob

pick random a 2 Z=NZ
computeA = ga

pick random b 2 Z=NZ
computeB = gb

A

B

Shared secret isBa = gab = Ab
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Brief history of DH key exchange

1976 Di�ie & Hellman publish New directions in cryptography,
suggest usingG = F�p .

1978 Pollard publishes his discrete logarithm algorithm (O(
p
#G)

complexity).
1980 Miller and Koblitz independently suggest using elliptic curves

G = E(Fp).
1994 Shor publishes his quantum discrete logarithm / factoring

algorithm.
2005 NSA standardizes elliptic curve key agreement (ECDH) and

signatures ECDSA.
2017 � 70% of web tra�ic is secured by ECDH and/or ECDSA.
2017 NIST launches post-quantum competition, says “not to bother

moving to elliptic curves, if you haven’t yet”.
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History of isogeny-based cryptography
1996 Couveignes introduces the Hard Homogeneous Spaces. His

work stays unpublished for 10 years.
2006 Rostovtsev & Stolbunov independently rediscover Couveignes

ideas, suggest isogeny-based Di�ie–Hellman as a
quantum-resistant primitive.

2006-2010 Other isogeny-based protocols by Teske and Charles, Goren &
Lauter.

2011-2012 D., Jao & Plût introduce SIDH, an e�icient post-quantum key
exchange inspired by Couveignes, Rostovtsev, Stolbunov,
Charles, Goren, Lauter.

2017 SIDH is submitted to the NIST competition (with the name
SIKE, only isogeny-based candidate).

2018 D., Kie�er & Smith resurrect the
Couveignes–Rostovtsev–Stolbunov protocol, Castryck, Lange,
Martindale, Panny & Renes publish an e�icient variant named
CSIDH.
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Elliptic curves
LetE : y2 = x 3 + ax + b be an elliptic curve. . .

P

Q

R

P +Q
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Elliptic curves
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The QUANTHOMMenace
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Basically every isogeny-based protocol...

Public curve

Public curve

Shared secret
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Computing Isogenies
Vélu’s formulas

Input: A subgroupH � E ,
Output: The isogeny � : E ! E=H .

Complexity: O(`)— Vélu 1971, . . .
Why? Evaluate isogeny on pointsP 2 E ;

Walk in isogeny graphs.

Explicit Isogeny Problem
Input: CurveE , (prime) integer `

Output: All subgroupsH � E of order `.
Complexity: ~O(`2)— Elkies 1992

Why? List all isogenies of given degree;
Count points of elliptic curves;
Compute endomorphism rings of elliptic curves;
Walk in isogeny graphs.
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Computing Isogenies

Explicit Isogeny Problem (2)
Input: CurvesE ;E 0, isogenous of degree `.

Output: The isogeny � : E ! E 0 of degree `.
Complexity: O(`2)— Elkies 1992; Couveignes 1996; Lercier and Sirvent

2008; De Feo 2011; De Feo, Hugounenq, Plût, and Schost 2016;
Lairez and Vaccon 2016, . . .

Why? Count points of elliptic curves.

Isogeny Walk Problem
Input: Isogenous curvesE ;E 0.

Output: An isogeny � : E ! E 0 of smooth degree.
Complexity: Generically hard — Galbraith, Hess, and Smart 2002, . . .

Why? Cryptanalysis (ECC);
Foundational problem for isogeny-based cryptography.
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Randomwalks and hash functions (circa 2006)
Any expander graph gives rise to a hash function.

v
0

1
1

0
0

1
1

0
0

1
1

0

v 0 H (010101) = v 0

Fix a starting vertex v ;
The value to be hashed determines a random path to v 0;
v 0 is the hash.

(Charles, K. E. Lauter, and Goren 2009) hash function (CGL)
Use the expander graph of supersingular 2-isogenies;

Collision resistance
2nd preimage resistance

)
= hardness of finding cycles in the graph;

Preimage resistance = hardness of finding a path from v to v 0.
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Hardness of CGL
Finding cycles

Analogous to finding endomorphisms. . .
. . .very bad idea to start from a curve with known endomorphism ring!
Translation algortihm: elements ofBp;1$ isogeny loops
Doable in polylog(p).a

aKohel, K. Lauter, Petit, and Tignol 2014; Eisenträger, Hallgren, K. Lauter,
Morrison, and Petit 2018.

Finding pathsE ! E 0

Analogous to finding connecting ideals between twomaximal orders
O;O0 (i.e. a le� ideal I � O that is a right ideal ofO0).
Poly-time equivalent to computingEnd(E) andEnd(E 0).a

Best known algorithm to computeEnd(E) takes poly(p).b

aEisenträger, Hallgren, K. Lauter, Morrison, and Petit 2018.
bKohel 1996; Cerviño 2004.
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Expander graphs from groups

g2

g4
g8

g3

g6

g12

g11

g9

g5
g10

g7

g1

Let G = hgi be a cyclic
group of order p.

Let
S � (Z=pZ)� s.t.
S�1 � S .
The Schreier graph of
(S ;G n f1g) is (usually)
an expander.

x 7! x 2

x 7! x 3

x 7! x 5
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Key exchange from Schreier graphs

g

gA

gB

gBA

= gAB

Public parameters:
A groupG = hgi of order p;
A subset S � (Z=pZ)�.

1 Alice takes a secret random
walk sA : g ! gA of length
O(log p);

2 Bob does the same;
3 They publish gA and gB ;
4 Alice repeats her secret walk

sA starting from gB .
5 Bob repeats his secret walk

sB starting from gA.
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Key exchange from Schreier graphs

g

gA

gB

gBA = gAB

Why does this work?

gA = g2�3�2�5;

gB = g32�5�2;

gBA = gAB = g23�33�52
;

and gA; gB ; gAB are uniformly
distributed inG . . .

. . . Indeed, this is just a twisted
presentation of the classical
Di�ie-Hellman protocol!
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Key exchange in graphs of ordinary isogenies3 (CRS)
Parameters:

E=Fp ordinary elliptic curve, with Frobenius endomorphism � 2 O.
(small) primes `1,`2,. . .such that

�
D�
`i

�
= 1.

elements f1 = (`1; � � �1), f2 = (`2; � � �2),. . . inCl(O).
Secret data: Randomwalks a; b 2 Cl(O) in the isogeny graph.

E

a � E b � E

ab � E = ba � E

fa1
1 fa2

2 � � � = a b = fb11 fb22 � � �

3Couveignes 2006; Rostovtsev and Stolbunov 2006.
Luca De Feo (U Paris Saclay) Isogeny graphs in cryptography Jul 29–Aug 2, 2019 —Würzburg 68 / 82



Computing the action ofCl(O)

Input: An ideal class a = fa1
1 fa2

2 � � � .
Output: The elliptic curve a � E .

Algorithm: Let fn = (`; � � �)n , repeat n times:
Use Elkies’ algorithm to find all (two) curves isogenous
toE of degree `,
Choose the one such that ker� � ker(� � �).

Parameters size / performance
Adversary goal: GivenE ; a � E , find a;
Graph size: #Cl(O) � p

p;
Best (classical) attack: Meet-in-the-middle / Random-walk in

p
#Cl(O);

For 2128 security: choose log p � 512;
Time to evaluate the isogeny actiona: Dozens of minutes!

aDe Feo, Kie�er, and Smith 2018.
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Vélu to the rescue?
Input: An ideal class a = fa1

1 fa2
2 � � � .

Output: The elliptic curve a � E .
Algorithm: Let fn = (`; � � �)n . Why not:

Presciently findH = E [`] \ ker(� � �),
Apply Vélu’s formulas toH .

Speeding up the class group action
Problem: H must be inE(Fp) for Vélu’s formulas to be e�icient.

Ideaa: Force

(
p = �1 mod `;

� = 1 mod `;

so thatE [`] = H � E(Fp).

How to waste an internship: Forcing � = Forcing#E = Very hard!
Time to evaluate the isogeny action: Still 5 minutes!

aDe Feo, Kie�er, and Smith 2018.
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Supersingular to the rescue!

For all supersingular curves defined over Fp ,

� =

 p�p 0
0 �p�p

!
mod `

CSIDH (pron.: Seaside)
Choose p = �1 mod ` for many primes `;
Hence, � = 1 mod `. Win!

Performance: Same security as CRS in less than 50ms!a

aCastryck, Lange, Martindale, Panny, and Renes 2018.
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Quantum security
Fact: Shor’s algorithm does not apply to Di�ie-Hellman protocols from
group actions.

Subexponential attack exp(
p
log p log log p)

Reduction to the hidden shi� problem by evaluating the class group
action in quantum superspositiona (subexpoential cost);
Well known reduction from the hidden shi� to the dihedral
(non-abelian) hidden subgroup problem;
Kuperberg’s algorithmb solves the dHSP with a subexponential
number of class group evaluations.
Recent workc suggests that 264-qbit security is achieved somewhere in
512 < log p < 1024.

aChilds, Jao, and Soukharev 2014.
bKuperberg 2005; Regev 2004; Kuperberg 2013.
cBonnetain and Naya-Plasencia 2018; Bonnetain and Schrottenloher 2018;

Biasse, Jacobson Jr, and Iezzi 2018; Jao, LeGrow, Leonardi, and Ruiz-Lopez 2018;
Bernstein, Lange, Martindale, and Panny 2018.
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Key exchange with supersingular curves (2011)
Good news: there is no action of a commutative class group.
Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two di�erent isogeny graphs on the
same vertex set.

Figure: 2- and 3-isogeny
graphs on F972 .
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Key exchange with supersingular curves (2011)
Fix small primes `A, `B ;
No canonical labeling of the `A- and `B -isogeny graphs; however. . .

Walk of length eA
=

Isogeny of degree `eA
A

=
Kernel hPi � E [`eA

A ]

ker� = hPi � E [`eA
A ]

ker = hQi � E [`eB
B ]

ker�0 = h (P)i
ker 0 = h�(Q)i

E E=hPi

E=hQi E=hP ;Qi

�

�0

  0
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Supersingular Isogeny Di�ie-Hellman4

Parameters:
Prime p such that
p + 1 = `aA`

b
B ;

Supersingular curve
E ' (Z=(p + 1)Z)2;

E [`aA] = hPA;QAi;
E [`bB ] = hPB ;QB i.

Secret data:
RA = mAPA + nAQA,

RB = mBPB + nBQB ,

E

E=hRAi

�(PB )

�(QB )

E=hRBi

 (PA)

 (QA)

E=hRAi
�(RB )

' E=hRA;RBi ' E=hRB i
 (RA)

�  

 0 �0

�(RB )  (RA)

4Jao and De Feo 2011; De Feo, Jao, and Plût 2014.
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Supersingular Isogeny Di�ie-Hellman4

Parameters:
Prime p such that
p + 1 = `aA`

b
B ;

Supersingular curve
E ' (Z=(p + 1)Z)2;

E [`aA] = hPA;QAi;
E [`bB ] = hPB ;QB i.

Secret data:
RA = mAPA + nAQA,

RB = mBPB + nBQB ,

E

E=hRAi
�(PB )

�(QB )

E=hRBi
 (PA)

 (QA)

E=hRAi
�(RB )

' E=hRA;RBi ' E=hRB i
 (RA)

�  

 0 �0

�(RB )  (RA)

4Jao and De Feo 2011; De Feo, Jao, and Plût 2014.
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From 10minutes to 10ms in 20 years

1996

Couveignes’ key exchange

2006

Rostovstev & Stolbunov (> 5 min)

2011

SIDH (500ms) (Jao and D.)

2012

SIDH (50ms) (D., Jao, Plût)

2016

SIDH (30ms) (Costello, Longa, Naherig)

2017

SIKE (10ms) (NIST candidate)

2018

CSIDH (50ms)

2019

CSIDH (35ms) (Meyer, Reith)
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Generic attacks

Problem: GivenE ;E 0, isogenous of degree `n , find � : E ! E 0.

E

E=hP0i

Ei=hPii

E=hP`n=2i

...

...

E 0

`n=2

`n=2

With high probability � is the unique collision (or claw)O(`n=2).
A quantum claw finding5 algorithm solves the problem inO(`n=3).

5Tani 2009.
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Security

The SIDH problem
GivenE , Alice’s public dataE=hRAi; �(PB ); �(QB ), and Bob’s public data
E=hRB i;  (PA);  (QA), find the shared secretE=hRA;RB i.

Under the SIDH assumption:
The SIDH key exchange protocol is session-key secure.
The derived El Gamal-type PKE is CPA secure.

Reductions
SIDH! Isogeny Walk Problem;
SIDH! Computing the endomorphism rings ofE andE=hRAi.a

aKohel, K. Lauter, Petit, and Tignol 2014; Galbraith, Petit, Shani, and Ti 2016.
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Chosen ciphertext attack6
For simplicity, assume Alice’s prime is ` = 2.

Evil Bob
Alice has a long-term secretR = mP + nQ 2 E [2e ];
Bob produces an ephemeral secret ;
Bob sends to Alice (P);  (Q + 2e�1P);
Alice computes the shared secret correctly i�

R = mP + nQ

= mP + nQ + n2e�1P ;

i.e., i� n is even;
Bob learns one bit of the secret key by checking that Alice gets the right
shared secret.

Bob repeats the queries in a similar fashion, learning one bit per query.
Detecting Bob’s faulty key seems to be as hard as breaking SIDH.

6Galbraith, Petit, Shani, and Ti 2016.
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CSIDH vs SIDH
CSIDH SIDH

Speed (NIST 1) � 70ms � 7ms
Public key size (NIST 1) 64B 346B
Key compression

�

speed � 13ms

�

size 209B
Constant time impl. 2�slower ok
Submitted to NIST no yes
Best classical attack p1=4 p1=4 (p3=8)
Best quantum attack ~O

�
3
p

log3 p
�

p1=6 (p3=8)
Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc
CPA security yes yes
CCA security yes Fujisaki-Okamoto
Non-interactive key ex. yes no
Signatures short but slooow! big and slow
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SIKE: Supersingular Isogeny Key Encapsulation

Submission to the NIST PQ competition:
SIKE.PKE: El Gamal-type systemwith IND-CPA security proof,
SIKE.KEM: generically transformed systemwith IND-CCA security

proof.
NIST security levels 1, 2, 3 and 5.
Smallest communication complexity among all proposals in each level.
Slowest among all benchmarked proposals in each level.
A team of 15 submitters, from 8 universities and companies.
Head to https://sike.org.

p cl. security NIST cat. speed comm.
SIKEp434 22163137 � 1 128 bits 1 7ms 346 B
SIKEp503 22503159 � 1 152 bits 2 10ms 402 B
SIKEp610 23053192 � 1 189 bits 3 19ms 486 B
SIKEp751 23723239 � 1 256 bits 5 29ms 596 B
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Thank you

http://defeo.lu/

@luca_defeo
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