Mathematics of Isogeny-based Cryptography

Luca De Feo

IBM Research, Zürich

September 16, 2019 Isogeny-based Cryptography Workshop Birmingham

Slides online at https://defeo.lu/docet

Projective space

Definition (Projective space)

Let \bar{k} an algebraically closed field, the projective space $\mathbb{P}^n(\bar{k})$ is the set of non-null (n + 1)-tuples $(x_0, \ldots, x_n) \in \bar{k}^n$ modulo the equivalence relation

$$(x_0,\ldots,x_n)\sim (\lambda x_0,\ldots,\lambda x_n) \qquad ext{with } \lambda\in ar k\setminus\{0\}.$$

A class is denoted by $(x_0 : \cdots : x_n)$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve *defined over* k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

 $Y^2Z = X^3 + aXZ^2 + bZ^3,$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve *defined over* k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

• $\mathcal{O} = (0:1:0)$ is the point at infinity;

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve *defined over* k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

- $\mathcal{O} = (0:1:0)$ is the point at infinity;
- $y^2 = x^3 + ax + b$ is the affine equation.

$$E : y^2 = x^3 - 2x + 1$$

Rational points:

•
$$E(\mathbb{Q}) = \{(1,0), (0,1), (0,-1), \mathcal{O}\},\$$

$$E : y^2 = x^3 - 2x + 1$$

Rational points:

•
$$E(\mathbb{Q}) = \{(1,0), (0,1), (0,-1), \mathcal{O}\},\$$

• $\#E(\mathbb{Q}(\sqrt{5}))=8$,

$$E : y^2 = x^3 - 2x + 1$$

Rational points:

- $E(\mathbb{Q}) = \{(1,0), (0,1), (0,-1), \mathcal{O}\},\$
- $\#E(\mathbb{Q}(\sqrt{5}))=8$,
- ...
- $\#E(\mathbb{R}) = \infty$.

$$E : y^2 = x^3 - 2x + 1$$

Rational points:

- $E(\mathbb{Q}) = \{(1,0), (0,1), (0,-1), \mathcal{O}\},\$
- $\#E(\mathbb{Q}(\sqrt{5}))=8$,
- ...
- $\#E(\mathbb{R}) = \infty$.
- $\#E(\mathbb{C}) = \infty$.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

• The law is algebraic (it has formulas);

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- \mathcal{O} is the group identity;
- Opposite points have the same *x*-value.

What are elliptic curves?

For mathematicians

- The smooth projective curves of genus 1 (with a distinguished point);
- The simplest abelian varieties (dimension 1);
- Finitely generated abelian groups of mysterious free rank (aka BSD conjecture);
- What you use to make examples.

What are elliptic curves?

For mathematicians

- The smooth projective curves of genus 1 (with a distinguished point);
- The simplest abelian varieties (dimension 1);
- Finitely generated abelian groups of mysterious free rank (aka BSD conjecture);
- What you use to make examples.

For cryptographers

- Finite abelian groups (often cyclic);
- Easy to compute the order;
- "2-dimensional" generalizations of μ_k (the roots of unity of k)...
- ... with bilinear maps (aka pairings)!

Maps: isomorphisms

Isomorphisms

The only invertible algebraic maps between elliptic curves are of the form

$$(x,y)\mapsto (u^2x,u^3y)$$

for some $u \in \overline{k}$. They are group isomorphisms.

j-Invariant

Let
$$E$$
 : $y^2 = x^3 + ax + b$, its *j*-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

Group structure

Torsion structure

Let E be defined over an algebraically closed field \overline{k} of characteristic p.

$E[m]\simeq ~~\mathbb{Z}/m\mathbb{Z} imes \mathbb{Z}/m\mathbb{Z}$	$\qquad \text{if }p \nmid m,$
$F[p^e] \sim \int \mathbb{Z}/p^e \mathbb{Z}$	ordinary case,
$E[\mathcal{D}] \rightarrow \{\mathcal{O}\}$	supersingular case.

Finite fields (Hasse's theorem)

Let E be defined over a finite field \mathbb{F}_q , then

$$|\#E(\mathbb{F}_q)-q-1|\leq 2\sqrt{q}.$$

In particular, there exist integers n_1 and $n_2 | \gcd(n_1, q - 1)$ such that

 $E(\mathbb{F}_q)\simeq \mathbb{Z}/n_1\mathbb{Z} imes \mathbb{Z}/n_2\mathbb{Z}.$

Luca De Feo (IBM Research)

Maths of Isogeny Based Crypto

Maps: what's scalar multiplication?

$$[n] : P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- A map E o E ,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$[n] : P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- A map E o E ,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \hspace{.1 in} : \hspace{.1 in} P \mapsto \phi(P)$$

- A map E
 ightarrow E ,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \hspace{.1 in} : \hspace{.1 in} P \mapsto \phi(P)$$

- A map $E \to \not\!\!\!E E'$,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \hspace{.1 in} : \hspace{.1 in} P \mapsto \phi(P)$$

- A map $E \to \not\!\!\!E E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \hspace{.1 in} : \hspace{.1 in} P \mapsto \phi(P)$$

- A map $E \to \not\!\!\!E E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree $h \neq H$.

$$\phi \hspace{.1 in} : \hspace{.1 in} P \mapsto \phi(P)$$

- A map $E \to \not\!\!\!E E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree $h \neq H$.

(Separable) isogenies \Leftrightarrow finite subgroups:

$$0 o H o E \stackrel{\phi}{ o} E' o 0$$

Isogenies: an example over \mathbb{F}_{11}

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Isogenies: an example over \mathbb{F}_{11}

• Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

Maps: isogenies

Theorem

Let $\phi: E \to E'$ be a map between elliptic curves. These conditions are equivalent:

- φ is a surjective group morphism,
- ϕ is a group morphism with finite kernel,
- φ is a non-constant algebraic map of projective varieties sending the point at infinity of E onto the point at infinity of E'.

If they hold ϕ is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m

On any curve, an isogeny from E to itself (i.e., an endomorphism):

$$egin{array}{rcl} [m] & \colon & E o E, \ & P \mapsto [m]P \end{array}$$

Isogeny lexicon

Degree

- \approx degree of the rational fractions defining the isogeny;
- Rough measure of the information needed to encode it.

Separable, inseparable, cyclic

An isogeny ϕ is separable iff deg $\phi = \# \ker \phi$.

- Given $H \subset E$ finite, write $\phi : E \to E/H$ for the unique separable isogeny s.t. ker $\phi = H$.
- ϕ inseparable \Rightarrow p divides deg ϕ .
- Cyclic isogeny \equiv separable isogeny with cyclic kernel.

Non-example: the multiplication map [m]:E
ightarrow E.

Rationality

Given E defined over k, an isogeny ϕ is rational if ker ϕ is Galois invariant.

 $\Rightarrow \phi$ is represented by rational fractions with coefficients in k.

The dual isogeny

Let $\phi: E o E'$ be an isogeny of degree m. There is a unique isogeny $\hat{\phi}: E' o E$ such that

$$\hat{\phi}\circ\phi=[m]_E, \quad \phi\circ\hat{\phi}=[m]_{E'}.$$

 $\hat{\phi}$ is called the dual isogeny of ϕ ; it has the following properties:

Luca De Feo (IBM Research)

Luca De Feo (IBM Research)

$$j = 1728$$

Isogeny graphs

Serre-Tate theorem

Two elliptic curves E, E' defined over a finite field \mathbb{F}_q are isogenous (over \mathbb{F}_q) iff $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

Isogeny graphs

- Vertices are curves up to isomorphism,
- Edges are isogenies up to isomorphism.

Isogeny volcanoes

- Curves are ordinary,
- Isogenies all have degree a prime *l*.

What do isogeny graphs look like?

Torsion subgroups (ℓ prime) In an algebraically closed field:

 $E[\ell] = \langle P, Q
angle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$

₩

There are exactly $\ell + 1$ cyclic subgroups $H \subset E$ of order ℓ :

$$\langle P+Q\rangle, \langle P+2Q\rangle, \dots, \langle P\rangle, \langle Q\rangle$$

There are exactly $\ell + 1$ distinct isogenies of degree ℓ .

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{ll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$

$$\pi(P) = aP + bQ$$

$$\pi(Q) = cP + dQ$$

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{ll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\boldsymbol{\ell}]$

aP + bQcP + dQ

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{lll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$

$$\begin{pmatrix} aP+bQ\\ cP+dQ \end{pmatrix}$$

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,\,Q
angle\simeq ({\mathbb Z}/\ell{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{lll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on
$$E[\ell]$$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{ll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$ $\pi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mod \ell$

Rational isogenies ($\ell \neq p$)

In the algebraic closure $\overline{\mathbb{F}}_p$

$$E[{m\ell}]=\langle P,Q
angle\simeq ({\mathbb Z}/{m\ell}{\mathbb Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{array}{lll} \pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p) \end{array}$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$ $\pi: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mod \ell$ We identify $\pi | E[\ell]$ to a conjugacy class in $\operatorname{GL}(\mathbb{Z}/\ell\mathbb{Z}).$

Galois invariant proper subgroups of $E[\ell]$ = eigenspaces of $\pi \in \operatorname{GL}(\mathbb{Z}/\ell\mathbb{Z})$ = rational isogenies of degree ℓ

```
Galois invariant proper subgroups of E[\ell]
=
eigenspaces of \pi \in \operatorname{GL}(\mathbb{Z}/\ell\mathbb{Z})
=
rational isogenies of degree \ell
```

How many Galois invariant subgroups?	
• $\pi E[\ell] \sim \left(\begin{smallmatrix} \lambda & 0 \\ 0 & \lambda \end{smallmatrix} ight)$	$ ightarrow {m \ell}+1$ isogenies
$ullet$ $\pi E[\ell]\sim\left(egin{smallmatrix}\lambda&0\0&\mu\end{smallmatrix} ight)$ with $\lambda eq\mu$	\rightarrow two isogenies
$ullet \ \pi E[\ell] \sim \left(\begin{smallmatrix} \lambda & * \ 0 & \lambda \end{smallmatrix} ight)$	ightarrow one isogeny
• $\pi E[\ell]$ has no eigenvalues in $\mathbb{Z}/\ell\mathbb{Z}$	ightarrow no isogeny

Algebras, orders

- A quadratic imaginary number field is an extension of \mathbb{Q} of the form $Q[\sqrt{-D}]$ for some non-square D > 0.
- A quaternion algebra is an algebra of the form Q + αQ + βQ + αβQ, where the generators satisfy the relations

$$lpha^2,eta^2\in\mathbb{Q},\quad lpha^2<0,\quad eta^2<0,\quad etalpha=-lphaeta.$$

Orders

Let K be a finitely generated \mathbb{Q} -algebra. An order $\mathcal{O} \subset K$ is a subring of K that is a finitely generated \mathbb{Z} -module of maximal dimension. An order that is not contained in any other order of K is called a maximal order.

Examples:

- \mathbb{Z} is the only order contained in \mathbb{Q} ,
- $\mathbb{Z}[i]$ is the only maximal order of $\mathbb{Q}(i)$,
- $\mathbb{Z}[\sqrt{5}]$ is a non-maximal order of $\mathbb{Q}(\sqrt{5})$,
- The ring of integers of a number field is its only maximal order,
- In general, maximal orders in quaternion algebras are not unique.

Luca De Feo (IBM Research)

Maths of Isogeny Based Crypto

The endomorphism ring

The endomorphism ring End(E) of an elliptic curve E is the ring of all isogenies $E \to E$ (plus the null map) with addition and composition.

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p. End(E) is isomorphic to one of the following:

•
$$\mathbb{Z}$$
, only if $p = 0$

E is ordinary.

• An order \mathcal{O} in a quadratic imaginary field:

E is ordinary with complex multiplication by \mathcal{O} .

• Only if p > 0, a maximal order in a quaternion algebra^{*a*}:

E is supersingular.

^{*a*}(ramified at p and ∞)

The finite field case

Theorem (Hasse)

Let E be defined over a finite field. Its Frobenius endomorphism π satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0$$

in End(E) for some $|t| \leq 2\sqrt{q}$, called the trace of π . The trace t is coprime to q if and only if E is ordinary.

Suppose E is ordinary, then $D_{\pi} = t^2 - 4q < 0$ is the discriminant of $\mathbb{Z}[\pi]$.

• $K = \mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{D_{\pi}})$ is the endomorphism algebra of E.

• Denote by \mathcal{O}_K its ring of integers, then

$$\mathbb{Z}
eq \mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset \mathcal{O}_K.$$

In the supersingular case, π may or may not be in \mathbb{Z} , depending on q.

Endomorphism rings of ordinary curves

Classifying quadratic orders

Let K be a quadratic number field, and let \mathcal{O}_K be its ring of integers.

- Any order O ⊂ K can be written as O = Z + fO_K for an integer f, called the conductor of O, denoted by [O_k : O].
- If d_K is the discriminant of K, the discriminant of \mathcal{O} is $f^2 d_K$.
- If $\mathcal{O}, \mathcal{O}'$ are two orders with discriminants d, d', then $\mathcal{O} \subset \mathcal{O}'$ iff d' | d.

Let E, E' be curves with respective endomorphism rings $\mathcal{O}, \mathcal{O}' \subset K$. Let $\phi : E \to E'$ be an isogeny of prime degree ℓ , then:

$$\begin{array}{ll} \text{if } \mathcal{O} = \mathcal{O}', & \phi \text{ is horizontal;} \\ \text{if } [\mathcal{O}' : \mathcal{O}] = \ell, & \phi \text{ is ascending;} \\ \text{if } [\mathcal{O} : \mathcal{O}'] = \ell, & \phi \text{ is descending.} \end{array}$$

Let E be ordinary, End $(E) \subset K$.

 \mathcal{O}_K : maximal order of K, D_K : discriminant of K.

		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K:\mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$oldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\ell \mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	l
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$oldsymbol{\ell} eq [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

Let E be ordinary, End $(E) \subset K$.

 \mathcal{O}_K : maximal order of K, D_K : discriminant of K.

 $\mathsf{Height} = v_\ell([\mathcal{O}_K : \mathbb{Z}[\pi]]).$

		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K:\boldsymbol{\mathcal{O}}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\boldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	· · · · ·	1	Ì
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\boldsymbol{\ell} \nmid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

Let E be ordinary, End $(E) \subset K$.

 \mathcal{O}_K : maximal order of K, D_K : discriminant of K.

- $\mathsf{Height} = v_\ell([\mathcal{O}_K : \mathbb{Z}[\pi]]).$
- How large is the crater?

		Horizontal	Ascending	Descending
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$\ell mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\boldsymbol{\mathcal{O}}_K : \boldsymbol{\mathcal{O}}]]$	$oldsymbol{\ell} \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\ell \mid [\mathcal{O}:\mathbb{Z}[\pi]]$	· · · · ·	1	Ì
$\boldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$\ell e [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

How large is the crater of a volcano?

Let $\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

```
The class group
```

The class group of *O* is

$$\mathrm{Cl}(\mathcal{O})=\mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order h(𝔅) is called the class number of 𝔅.
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

The a-torsion

- Let $\mathfrak{a} \subset \mathcal{O}$ be an (integral invertible) ideal of \mathcal{O} ;
- Let E[a] be the subgroup of E annihilated by a:

 $E[\mathfrak{a}] = \{P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a}\};$

• Let $\phi: E \to E_{\mathfrak{a}}$, where $E_{\mathfrak{a}} = E/E[\mathfrak{a}]$.

Then $\operatorname{End}(E_{\mathfrak{a}}) = \mathcal{O}$ (i.e., ϕ is horizontal).

Theorem (Complex multiplication)

The action on the set of elliptic curves with complex multiplication by \mathcal{O} defined by $\mathfrak{a} * j(E) = j(E_{\mathfrak{a}})$ factors through $Cl(\mathcal{O})$, is faithful and transitive.

Corollary

Let End(*E*) have discriminant *D*. Assume that $\begin{pmatrix} D \\ \ell \end{pmatrix} = 1$, then *E* is on a crater of size *N* of an ℓ -volcano, and N|h(End(E))

Luca De Feo (IBM Research)

Complex multiplication graphs

Vertices elliptic are curves with complex E_3 multiplication by \mathcal{O}_K E_4 E_2 • (i.e., End(E) $\simeq \mathcal{O}_K \subset$ $\mathbb{O}(\sqrt{-D})).$ E_5 E_1 $E_6 \bullet$ • E_{12} E_7 E_{11} E_{10} E_8 E_{9}

Luca De Feo (IBM Research)

Vertices elliptic are curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset$ $\mathbb{Q}(\sqrt{-D})).$ Edges are horizontal isogenies of bounded prime degree.

degree 2

degree 3

degree 5

Luca De Feo (IBM Research)

elliptic

complex

are

Vertices

Supersingular endomorphisms

Recall, a curve E over a field \mathbb{F}_q of characteristic p is supersingular iff

$$\pi^2 - t\pi + q = 0$$

with $t = 0 \mod p$.

Case: t=0 \Rightarrow $D_{\pi}=-4q$

• Only possibility for E/\mathbb{F}_p ,

• E/\mathbb{F}_p has CM by an order of $\mathbb{Q}(\sqrt{-p})$, similar to the ordinary case.

Case: $t = \pm 2\sqrt{q} \Rightarrow D_{\pi} = 0$

• General case for E/\mathbb{F}_q , when q is an even power.

• $\pi = \pm \sqrt{q}$, hence no complex multiplication.

We will ignore marginal cases: $t = \pm \sqrt{q}, \pm \sqrt{2q}, \pm \sqrt{3q}$.

Supersingular complex multiplication

Let E/\mathbb{F}_p be a supersingular curve, then $\pi^2 = -p$, and

$$\pi = ig(egin{array}{cc} \sqrt{-p} & 0 \ 0 & -\sqrt{-p} \ ig) \mod oldsymbol{\ell}$$

for any ℓ s.t. $\left(\frac{-p}{\ell}\right) = 1$.

Theorem (Delfs, Galbraith 2016)

Let $\operatorname{End}_{\mathbb{F}_p}(E)$ denote the ring of \mathbb{F}_p -rational endomorphisms of E. Then

 $\mathbb{Z}[\pi] \subset \operatorname{End}_{\mathbb{F}_p}(E) \subset \mathbb{Q}(\sqrt{-p}).$

Orders of $\mathbb{Q}(\sqrt{-p})$

- If $p = 1 \mod 4$, then $\mathbb{Z}[\pi]$ is the maximal order.
- If $p = -1 \mod 4$, then $\mathbb{Z}[\frac{\pi+1}{2}]$ is the maximal order, and $[\mathbb{Z}[\frac{\pi+1}{2}] : \mathbb{Z}[\pi]] = 2$.

Supersingular CM graphs

All other ℓ -graphs are cycles of horizontal isogenies iff $\left(\frac{-p}{\ell}\right) = 1$.

Luca De Feo (IBM Research)

Maths of Isogeny Based Crypto

The full endomorphism ring

Theorem (Deuring)

Let E be a supersingular elliptic curve, then

- *E* is isomorphic to a curve defined over 𝑘_{p²};
- Every isogeny of E is defined over 𝔽_{p²};
- Every endomorphism of *E* is defined over 𝑘_{p²};
- End(*E*) is isomorphic to a maximal order in a quaternion algebra ramified at *p* and ∞.

In particular:

- If *E* is defined over \mathbb{F}_p , then $\operatorname{End}_{\mathbb{F}_p}(E)$ is strictly contained in $\operatorname{End}(E)$.
- Some endomorphisms do not commute!

An example

The curve of j-invariant 1728

$$E: y^2 = x^3 + x$$

is supersingular over \mathbb{F}_p iff $p = -1 \mod 4$.

Endomorphisms

 $\operatorname{End}(E) = \mathbb{Z} \langle \iota, \pi \rangle$, with:

- π the Frobenius endomorphism, s.t. $\pi^2 = -p$;
- ι the map

$$\iota(x,y)=(-x,iy),$$

where $i \in \mathbb{F}_{p^2}$ is a 4-th root of unity. Clearly, $\iota^2 = -1$.

And $\iota \pi = -\pi \iota$.

•
$$j = 1728$$

Quaternion algebra?! WTF?²

The quaternion algebra $B_{p,\infty}$ is:

- A 4-dimensional \mathbb{Q} -vector space with basis (1, i, j, k).
- A non-commutative division algebra¹ $B_{p,\infty} = \mathbb{Q}\langle i, j \rangle$ with the relations:

$$i^2=a, \quad j^2=-p, \quad ij=-ji=k,$$

for some a < 0 (depending on p).

- All elements of $B_{p,\infty}$ are quadratic algebraic numbers.
- B_{p,∞} ⊗ Q_ℓ ≃ M_{2×2}(Q_ℓ) for all ℓ ≠ p.
 I.e., endomorphisms restricted to E[ℓ^e] are just 2 × 2 matrices modℓ^e.
- $B_{p,\infty} \otimes \mathbb{R}$ is isomorphic to Hamilton's quaternions.
- $B_{p,\infty} \otimes \mathbb{Q}_p$ is a division algebra.

¹All elements have inverses. ²What The Field?

Luca De Feo (IBM Research)

Supersingular graphs

- Quaternion algebras have many maximal orders.
- For every maximal order type of B_{p,∞} there are 1 or 2 curves over F_{p²} having endomorphism ring isomorphic to it.
- Left ideals act on the set of maximal orders like isogenies.
- The graph of ℓ -isogenies is $(\ell + 1)$ -regular.

Figure: 3-isogeny graph on \mathbb{F}_{97^2} .

Graphs lexicon

- Degree: Number of (outgoing/ingoing) edges.
- *k*-regular: All vertices have degree *k*.
- Connected: There is a path between any two vertices.
 - Distance: The length of the shortest path between two vertices. Diameter: The longest distance between two vertices.
- $\lambda_1 \geq \cdots \geq \lambda_n$: The (ordered) eigenvalues of the adjacency matrix.

Expander graphs

Proposition

If G is a k-regular graph, its largest and smallest eigenvalues satisfy

$$k = \lambda_1 \ge \lambda_n \ge -k.$$

Expander families

An infinite family of connected k-regular graphs on n vertices is an expander family if there exists an $\epsilon > 0$ such that all non-trivial eigenvalues satisfy $|\lambda| \leq (1 - \epsilon)k$ for n large enough.

- Expander graphs have short diameter ($O(\log n)$);
- Random walks mix rapidly (after $O(\log n)$ steps, the induced distribution on the vertices is close to uniform).

Expander graphs from isogenies

Theorem (Pizer)

Let ℓ be fixed. The family of graphs of supersingular curves over \mathbb{F}_{p^2} with ℓ -isogenies, as $p \to \infty$, is an expander family^{*a*}.

^{*a*}Even better, it has the Ramanujan property.

Theorem (Jao, Miller, Venkatesan)

Let $\mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$ be an order in a quadratic imaginary field. The graphs of all curves over \mathbb{F}_q with complex multiplication by \mathcal{O} , with isogenies of prime degree bounded^{*a*} by $(\log q)^{2+\delta}$, are expanders.

^{*a*}May contain traces of GRH.

Executive summary

- Separable ℓ -isogeny = finite kernel = subgroup of $E[\ell]$,
 - eigenspace of π iff \mathbb{F}_q -rational,
 - distinct eigenvalues $\lambda \neq \mu$ define distinct directions on the crater.
- Isogeny graphs have j-invariants for vertices and "some" isogenies for edges.
- By varying the choices for the vertex and the isogeny set, we obtain graphs with different properties.
- ℓ-isogeny graphs of ordinary curves are volcanoes, (full) ℓ-isogeny graphs of supersingular curves are finite (ℓ + 1)-regular.
- CM theory naturally leads to define graphs of horizontal isogenies (both in the ordinary and the supersingular case) that are isomorphic to Cayley graphs of class groups.
- CM graphs are expanders. Supersingular full *l*-isogeny graphs are Ramanujan.

Weil pairing

Let (N, p) = 1, fix any basis $E[N] = \langle R, S \rangle$. For any points $P, Q \in E[N]$

$$P = aR + bS$$

 $Q = cR + dS$

the form $\det_N(P, Q) = \det\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right) = ad - bc \in \mathbb{Z}/N\mathbb{Z}$

is bilinear, non-degenerate, and independent from the choice of basis.

Theorem

Let E/\mathbb{F}_q be a curve, there exists a Galois invariant bilinear map

$$e_N: E[N] imes E[N] \longrightarrow \mu_N \subset ar{\mathbb{F}}_q,$$

called the Weil pairing of order N, and a primitive N-th root of unity $\zeta \in \overline{\mathbb{F}}_q$ such that

$$e_N(P,Q) = \zeta^{\det_N(P,Q)}.$$

The degree k of the smallest extension such that $\zeta \in \mathbb{F}_{q^k}$ is called the embedding degree of the pairing.

Luca De Feo (IBM Research)

Weil pairing and isogenies

Note

The Weil pairing is Galois invariant $\Leftrightarrow \det(\pi | E[N]) = q.$

Theorem

Let $\phi: E \to E'$ be an isogeny and $\hat{\phi}: E' \to E$ its dual. Let e_N be the Weil pairing of E and e'_N that of E'. Then, for

$$e_N(P,\hat{\phi}(Q))=e_N'(\phi(P),Q),$$

for any $P \in E[N]$ and $Q \in E'[N]$.

Corollary

$$e_N'(\phi(P),\phi(Q))=e_N(P,Q)^{\deg\phi}$$