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Projective space

z,,) € k™ modulo the equivalence relation

with X € &k \ {0}.
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Definition (Projective space)
Let k an algebraically closed field, the projective space P"(k) is the set of
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Weierstrass equations

Let k be a field of
characteristic # 2, 3.

An elliptic curve defined over
k is the locus in P?(k) of an
equation

Y2Z = X3+ aXZ°% 4+ bZ3,

where a, b € k and
4a3 +27b% £ 0.
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Weierstrass equations

Let k be a field of
characteristic # 2, 3.

An elliptic curve defined over
k is the locus in P?(k) of an
equation

Y2Z = X3+ aXZ°% 4+ bZ3,

where a, b € k and
4a3 +27b% £ 0.
@ O=(0:1:0)isthe
point at infinity;
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Weierstrass equations

Let k be a field of
characteristic # 2, 3.

An elliptic curve defined over
k is the locus in P?(k) of an
equation

Y2Z = X3+ aXZ°% 4+ bZ3,

where a, b € k and
4a3 +27b% £ 0.
@ O=(0:1:0)isthe
point at infinity;
@ y2==z3+ az + bisthe
affine equation.
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Attention: arithmetic geometry!

E:y’=z®-2z+1

Rational points:

° E(@) = {(11 0)7 (O: 1)1 (O) _1)) O}:
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Attention: arithmetic geometry!

E:y’=z®-2z+1

Rational points:

° E(@) = {(11 0)7 (01 1)1 (O) _1)) O}:
o #E(Q(V5)) =8,
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Attention: arithmetic geometry!

E:y’=z®-2z+1

Rational points:
° E(@) = {(11 0)7 (01 1)1 (O) _1)) O}:
o #E(Q(v5)) =8,
o ...
o #E(R) = oo.
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Attention: arithmetic geometry!

E:y’=z®-2z+1

Rational points:

L E(Q) = {(1:0)7 0, 1):(0)_1))0}:
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The group law

Bezout’s theorem

Every line cuts E in exactly
three points (counted with
multiplicity).

Define a group law such that
any three colinear points add
up to zero.
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The group law

Bezout’s theorem

Every line cuts E in exactly
three points (counted with
multiplicity).

Define a group law such that
any three colinear points add
up to zero.

@ The law is algebraic
(it has formulas);
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The group law

Bezout’s theorem

Every line cuts E in exactly
three points (counted with
multiplicity).

Define a group law such that
any three colinear points add
up to zero.

@ The law is algebraic
(it has formulas);

@ The law is commutative;
@ Oisthe group identity;

@ Opposite points have the
same z-value.
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What are elliptic curves?

For mathematicians
@ The smooth projective curves of genus 1 (with a distinguished point);
@ The simplest abelian varieties (dimension 1);

@ Finitely generated abelian groups of mysterious free rank (aka BSD
conjecture);

@ What you use to make examples.
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What are elliptic curves?

For mathematicians
@ The smooth projective curves of genus 1 (with a distinguished point);
@ The simplest abelian varieties (dimension 1);

@ Finitely generated abelian groups of mysterious free rank (aka BSD
conjecture);

@ What you use to make examples.

For cryptographers
@ Finite abelian groups (often cyclic);
@ Easy to compute the order;
@ “2-dimensional” generalizations of p, (the roots of unity of k)...

@ ...with bilinear maps (aka pairings)!
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Maps: isomorphisms

Isomorphisms
The only invertible algebraic maps between elliptic curves are of the form

2

(z,9) = (vz, u’y)

forsome u € k.
They are group isomorphisms.

7-Invariant
Let E : y? =23+ azx + b, its j-invariant is

4q3

() = 1728— %
1(B) 4a3 + 2702

Two elliptic curves E, E’' are isomorphicifand only if j(E) = j(E').
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Group structure

Torsion structure

Let E be defined over an algebraically closed field k of characteristic p.

E[m]~ 7Z/mZ x7Z]mZ ifptm,
Z/p°Z ordinary case,
E[p®] ~ :
{0} supersingular case.

Finite fields (Hasse’s theorem)
Let E be defined over a finite field I, then

[#E(Fq) — g — 1] <2/g.
In particular, there exist integers n; and n| gcd(n1, ¢ — 1) such that

E(F,) ~ Z/mZ x 7] n,Z.
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Maps: what’s scalar multiplication?

n] : P»P+P+---4+ P

n times

@ AmapE — E,
@ agroup morphism,
@ with finite kernel

(the torsion group E[n] ~ (Z/nZ)?),
@ surjective (in the algebraic closure),
@ given by rational maps of degree n?.
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Maps: what’s $¢alaY LLiplidatioN an isogeny?

n] : P»P+P+---4+ P

n times

@ Amap E — E,
@ agroup morphism,
@ with finite kernel

(the torsion group E[n] ~ (Z/nZ)?),
@ surjective (in the algebraic closure),
@ given by rational maps of degree n?.
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Maps: what’s $¢alaY LLiplidatioN an isogeny?

¢ : P (P)

@ AmapE — E,
@ agroup morphism,
@ with finite kernel

(the torsion group E[n] ~ (Z/nZ)?),
@ surjective (in the algebraic closure),
@ given by rational maps of degree n?.
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Maps: what’s $¢alaY LLiplidatioN an isogeny?

¢ : P (P)

e AmapE — HE',
@ agroup morphism,
@ with finite kernel

(the torsion group E[n] ~ (Z/nZ)?),
@ surjective (in the algebraic closure),
@ given by rational maps of degree n?.
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Maps: what’s $¢alaY LLiplidatioN an isogeny?

¢ : P (P)

@ AmapE — HBE,
@ agroup morphism,
@ with finite kernel
(EW RGOSt YOO BB/ MIZVP any finite subgroup H C E),
@ surjective (in the algebraic closure),
@ given by rational maps of degree n?.
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Maps: what’s $¢alaY LLiplidatioN an isogeny?

¢ : P (P)

@ AmapE — HBE,
@ agroup morphism,
@ with finite kernel
(EW RGOSt YOO BB/ MIZVP any finite subgroup H C E),
@ surjective (in the algebraic closure),
@ given by rational maps of degree fif # H.
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Maps: what’s $¢alaY LLiplidatioN an isogeny?

¢ : Prs §(P)

@ AmapE — HBE,
@ agroup morphism,
@ with finite kernel
(HN ROVSTBH KYOMD Bt/ (B M any finite subgroup H C E),
@ surjective (in the algebraic closure),
@ given by rational maps of degree fif # H.

(Separable) isogenies < finite subgroups:

05 HESE S0
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Isogenies: an example over [F'y;

E:y’=23+z B y?=2%—4zx
[ ] [
[ ] [ ] [ ]
[ I )
[ ]
A —e — 0o 0
[ ]
e o
[ ] [ ] [ ]
[ ] [ ]
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Isogenies: an example over FFy;

E:y’=z3+z

. - ==
o - S SEEE e
S SRR T rete
o o o - -
--mTT T °

@ Kernel generator in red.
2
- 1) @ Thisis a degree 2 map.
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Maps: isogenies
Theorem

Let ¢ : E — E'be a map between elliptic curves. These conditions are
equivalent:

@ ¢ is asurjective group morphism,
@ ¢ is a group morphism with finite kernel,

@ ¢ is a non-constant algebraic map of projective varieties sending the
point at infinity of E onto the point at infinity of E'.

If they hold ¢ is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.
Example: Multiplication-by-m
On any curve, an isogeny from E to itself (i.e., an endomorphism):
[m] : E — E,
P~ [m]P.

v
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Isogeny lexicon
Degree

@ =~ degree of the rational fractions defining the isogeny;
@ Rough measure of the information needed to encode it.

Separable, inseparable, cyclic
An isogeny ¢ is separable iff deg ¢ = # ker ¢.

@ Given H C E finite,write ¢ : E — E/H for the unique separable
isogenys.t.ker¢ = H.
@ ¢ inseparable = p divides deg ¢.
@ Cyclicisogeny = separable isogeny with cyclic kernel.
Non-example: the multiplication map [m] : E — E.

Rationality
Given E defined over k, an isogeny ¢ is rational if ker ¢ is Galois invariant.
= ¢ isrepresented by rational fractions with coefficients in %.

y
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The dual isogeny

Let ¢ : E — E'be anisogeny of degree m. There is a unique isogeny
¢ : B’ — E such that

- ~

pop=[mlg, ¢o¢=[m|p.
¢ is called the dual isogeny of ¢; it has the following properties:
@ ¢ isdefined over k if and only if ¢ is;
@ o= ¢ovforanyisogeny : E' — E
Q U +é=1+¢foranyisogenyy : E — E;
O deg¢ = deg;
Q4=9¢
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Up to isomorphism

P+Q
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Up to isomorphism
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Up to isomorphism
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Up to isomorphism
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Up to isomorphism

v=z4+az+b — J=1728.2%

4a,3+27b2
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Up to isomorphism
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Up to isomorphism
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Up to isomorphism
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Up to isomorphism

. [ )
j=1728

Luca De Feo (IBM Research) Maths of Isogeny Based Crypto



Up to isomorphism

{ ]
j=1728 j = 287496
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Up to isomorphism

T

j=1728 j = 287496
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Isogeny graphs

Serre-Tate theorem

Two elliptic curves E, E' defined over a finite field F; are isogenous
(overF,) iff #E(F,) = #E'(Fy).

Isogeny graphs

@ Vertices are curves up to
isomorphism,

@ Edges areisogenies up to
isomorphism.

Isogeny volcanoes
@ Curves are ordinary,

@ Isogenies all have degree a
prime £.
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What do isogeny graphs look like?

Torsion subgroups (£ prime)
In an algebraically closed field:

Blt) = (P, Q) ~ (Z/tZ)?

Y

There are exactly £ + 1 cyclic
subgroups H C E of order ¢:

(P+ @) (P+2Q),...,(P),(Q)

Y

There are exactly £ + 1 distinct
isogenies of degree £.

(non-CM) 2-isogeny graph over C
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What happens over a finite field F,,?

Rational isogenies (£ # p)

In the algebraic closure F,,

Blf] = (P, Q) ~ (Z/Z)?

However, an isogeny is defined over [, only if its kernel is Galois invariant.

W

Enter the Frobenius map The Frobenius action on E[/]
m:E— F m(P)= aP+bQ
(z,9) — (2%, 9") (@)= cP+dQ

E is seen here as a curve over F,.
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What happens over a finite field F,,?

Rational isogenies (£ # p)

In the algebraic closure F,,

Blf] = (P, Q) ~ (Z/Z)?

However, an isogeny is defined over [, only if its kernel is Galois invariant.

W

Enter the Frobenius map The Frobenius action on E[/]
m:E— E aP+bQ
(z,9) — (2%, 9") cP+dQ

E is seen here as a curve over F,.

Luca De Feo (IBM Research) Maths of Isogeny Based Crypto Birmingham IBC Workshop 17/42



What happens over a finite field F,,?

Rational isogenies (£ # p)

In the algebraic closure F,,

Blf] = (P, Q) ~ (Z/Z)?

However, an isogeny is defined over [, only if its kernel is Galois invariant.

W

Enter the Frobenius map The Frobenius action on E[/]
7:E—FE <aP + bQ)
(z,9) — (2%, 9") cP+dQ

E is seen here as a curve over F,.
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What happens over a finite field F,,?

Rational isogenies (£ # p)

In the algebraic closure F,,

Blf] = (P, Q) ~ (Z/Z)?

However, an isogeny is defined over [, only if its kernel is Galois invariant.

W

Enter the Frobenius map The Frobenius action on E[/]

O —— ) <a b >
(z,y) — (2%, y") c d

E is seen here as a curve over F,.
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What happens over a finite field F,,?

Rational isogenies (£ # p)

In the algebraic closure F,,

Blf] = (P, Q) ~ (Z/Z)?

However, an isogeny is defined over [, only if its kernel is Galois invariant.

W

Enter the Frobenius map The Frobenius action on E[/]
. a b
T E-—E . ( ) od ¢
(z,y) — (2%, vP) c d

E is seen here as a curve over F,.
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What happens over a finite field F,,?

Rational isogenies (£ # p)

In the algebraic closure F,,

Blf] = (P, Q) ~ (Z/Z)?

However, an isogeny is defined over [, only if its kernel is Galois invariant.

W

Enter the Frobenius map The Frobenius action on E[/]
. a b
7:E—E . ( ) od ¢
(z,y) — (2P, yP) c d
E is seen here as a curve over F,. We identify 7| E[£] to a conjugacy
classin GL(Z/¢Z).
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What happens over a finite field F,,?

Galois invariant proper subgroups of E[{]

eigenspaces of m € GL(Z/{Z)

rational isogenies of degree ¢
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What happens over a finite field F,,?

Galois invariant proper subgroups of E[{]

eigenspaces of m € GL(Z/{Z)

rational isogenies of degree ¢

How many Galois invariant subgroups?

o E[~ (39) — £ + lisogenies
e m|E[f] ~ (é 2) with X # p — two isogenies
o E[]~ (33%) — one isogeny
@ 7| E[{] has no eigenvalues in Z/{Z — no isogenyl
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Algebras, orders

@ Aquadraticimaginary number field is an extension of Q of the form
Q[v/— D] for some non-square D > 0.

@ Aquaternion algebra is an algebra of the form Q + aQ + Q + a8Q,
where the generators satisfy the relations

a’,frecQ, a*<0, B%2<0, Ba=-ap.

Orders

Let K be a finitely generated (Q-algebra. An order © C K is a subring of K
that is a finitely generated Z-module of maximal dimension. An order that is
not contained in any other order of K is called a maximal order.

Examples:
@ Zisthe only order contained in Q,
@ 7[i] is the only maximal order of Q(z),
@ 7[+/5] is a non-maximal order of Q(+/5),
@ Thering of integers of a number field is its only maximal order,
@ In general, maximal orders in quaternion algebras are not unique.
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The endomorphism ring

The endomorphism ring End( E) of an elliptic curve E is the ring of all
isogenies E — F (plus the null map) with addition and composition.

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p.
End(E) is isomorphic to one of the following:

@ Z,onlyifp =0

E is ordinary.
@ Anorder O in a quadratic imaginary field:

E is ordinary with complex multiplication by O.
@ Onlyif p > 0,a maximal order in a quaternion algebra“:

E is supersingular.

9(ramified at p and o)
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The finite field case

Theorem (Hasse)

Let E be defined over a finite field. Its Frobenius endomorphism 7 satisfies
a quadratic equation

7r2—t7r+q:0

in End(E) for some |t| < 2,/g, called the trace of 7. The trace ¢ is coprime
to g ifand only if & is ordinary.

Suppose E is ordinary, then D, = t2 — 4¢q < 0is the discriminant of Z[x].
o K = Q(m) = Q(+/ D) is the endomorphism algebra of E.
@ Denote by Ok its ring of integers, then

7 # Z[r] C End(E) C Ok.

In the supersingular case, m may or may not be in Z, depending on g.
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Endomorphism rings of ordinary curves

Classifying quadratic orders
Let K be a quadratic number field, and let O be its ring of integers.

@ Anyorder O C K can be written as O = Z + fOg for an integer f,
called the conductor of O, denoted by [0y, : O].

@ If dx is the discriminant of K, the discriminant of @ is f2dx.
e If O, O are two orders with discriminants d, d’, then O C O'iff d'|d.

V.

Ok

| T

7+ 20k 7+ 30k Z 4 50k

> >

7+ 60k Z+ 100k 7+ 150k

T~ |

Zlm| ~ Z + 300k
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Volcanology (Kohel 1996)

, . .
Let B, E bg cur\{es with relspectlve ifo=0o, & is horizontal;
endomorphismrings O, 0’ C K. i . .
/ . if [O': O] =¢, ¢isascending;
Let¢ : E — E'beanisogeny of if[0:0]=¢ ¢isdescendin
prime degree £, then: AT &
End(E)
Ok
Z[]

Ordinary isogeny volcano of degree £ = 3.
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Volcanology (Kohel 1996)

Let E be ordinary, /N /\ /\
End(F) C K.

Ox: maximal order of K, (Be) = -1 (Be) =0
Dg: discriminant of K. ﬁ\/l
(%) =+
Horizontal Ascending Descending
t1[ok: 0] | ef[o0: 2] | 1+ (5)
1ok O] | L]0 zlx)] | 1+ (ZF) e (B)
L|[Ok:0]] | £]][O:Z]r]] 1 1
L] [Ok:0]] | £1[O: Z[n]] 1
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Volcanology (Kohel 1996)

Let E be ordinary, /N /\ /\
End(F) C K.

Ox: maximal order of K, (Be) = -1 (Be) =0
Dy discriminant of K. ATTTN
Height = v ([Ok : Z[r]]). m
(%) =+
Horizontal Ascending Descending
1[0k O] | et [0 zla]] | 1+ (Z¢)
1ok O] | L]0 zlx)] | 1+ (ZF) e (%)
L0k :O)] | £|[O: Z[n]] 1 1
L] Ok :0]] | £1[O: Z[n]] 1
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Volcanology (Kohel 1996)

Let E be ordinary, /N /\ /\
End(F) C K.

Ox: maximal order of K, (Be) = -1 (Be) =0
Dg: discriminant of K. N
Height = v ([Ok : Z[r]]). m
How large is the crater? (B) = +1
Horizontal Ascending Descending
t1[ok: 0] | ef[0: 2] | 1+ (5)
1ok O] | L]0 zlx)] | 1+ (ZF) e-(Z)
L|[Ok:0]] | £]][O:Z[r]] 1 1
L] [0k : O] | £1]0: Zl7]] 1
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How large is the crater of a volcano?

Let End(E) = O C Q(v/— D). Define
@ Z(0), the group of invertible fractional ideals,
@ P(0), the group of principal ideals,

The class group
The class group of O is

Cl(O) = Z(0)/P(O).

@ lItisa finite abelian group.
@ Itsorder h(O) is called the class number of O.
@ It arises as the Galois group of an abelian extension of Q(v/— D).
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Complex multiplication

The a-torsion
@ Leta C O be an (integral invertible) ideal of O;
@ Let E[a] be the subgroup of £ annihilated by a:
Ela)]={P € E|a(P)=0foralla € a};

@ Let¢: E — E,, where E, = E/E]a).
Then End(E,) = O (i.e., ¢ is horizontal).

Theorem (Complex multiplication)

The action on the set of elliptic curves with complex multiplication by O
defined by a x j(E) = j(E,) factors through C1(©), is faithful and transitive.

o’

Corollary

Let End(E) have discriminant D. Assume that %) = 1,then Eisona
crater of size N of an ¢-volcano, and N |h(End(E))

4
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Complex multiplication graphs

Vertices are elliptic
curves with complex
B }123 B multiplication by Og
“ fat (i.e., End(E) ~ O C
Q(v-D)).
E5. .El
Ege LD
E,* °Ei
[ J [ ]
Es 3 Eio
FEqg
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Complex multiplication graphs

Vertices are elliptic
curves with complex
multiplication by Ogk
(i.e., End(E) ~ O C
Q(/=D)).

Ex B Edges are horizontal
isogenies of bounded
prime degree.

Es

Eg By — degree2

E; By

Eg Eio
FEy
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Complex multiplication graphs

Vertices are elliptic
curves with complex
multiplication by Ogk
(i.e., End(E) ~ O C
Q(/=D)).

Edges are horizontal
isogenies of bounded
prime degree.

By — degree2

— degree 3

Luca De Feo (IBM Research) Maths of Isogeny Based Crypto Birmingham IBC Workshop 27/42



Complex multiplication graphs

Vertices are elliptic
curves with complex
multiplication by Ogk
(i.e., End(E) ~ O C
Q(/=D)).

Edges are horizontal
isogenies of bounded
prime degree.

By — degree2
— degree 3

— degree 5

Birmingham IBC Workshop 27/42



Complex multiplication graphs

Vertices are elliptic
curves with complex
multiplication by Ogk
(i.e., End(E) ~ O C
Q(/=D)).

Edges are horizontal
isogenies of bounded
prime degree.

By — degree2
— degree 3

— degree 5

Isomorphic to a Cayley
graph of C1(Ok).
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Supersingular endomorphisms

Recall, a curve E over afield IF, of characteristic p is supersingular iff
7% — tm+ g=20

witht =0 mod p.

Case: t=0 = D,=—4q
@ Only possibility for £ /Fy,
@ E/F, has CM by an order of Q(1/—p), similar to the ordinary case.

Case: t==+2,/9q = D=0
@ General case for E /I, when g is an even power.
@ m = %./q, hence no complex multiplication.

We will ignore marginal cases: t = +,/q, =4/2q, =+/34.
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Supersingular complex multiplication

Let E/F, be a supersingular curve, then 7 = —p, and
_(v7p O
™= ( 0 —\/—7) mod ¢

forany £s.t. <_Tf’) =1.

Theorem (Delfs, Galbraith 2016)
Let Endr, ( £) denote the ring of IF,-rational endomorphisms of E. Then

Z[r] C Endg,(E) C Q(v~p).

Orders of Q(v/—p)

o If p = 1 mod 4, then Z[7] is the maximal order.

e If p = —1 mod 4, then Z[ ™3] is the maximal order,
and [Z[™1] : Z[x]) = 2.

4
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Supersingular CM graphs

2-volcanoes, p = —1 mod 4

2-graphs, p = 1 mod 4

*—=e

f X o Z[7]
~

All other £-graphs are cycles of horizontal isogenies iff (‘%) =1.
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The full endomorphism ring

Theorem (Deuring)
Let E be a supersingular elliptic curve, then
@ Eisisomorphic to a curve defined over [F2;
@ Everyisogeny of E is defined over I 2;
@ Every endomorphism of E is defined over IF,,z;

@ End(E) isisomorphic to a maximal order in a quaternion algebra
ramified at p and co.

In particular:

o If Eis defined over IFp, then Endy, ( E) is strictly contained in End(E).
@ Some endomorphisms do not commute!
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An example

The curve of j-invariant 1728
E:y’=z3+12
is supersingular over[F, iff p = —1 mod 4.

Endomorphisms

End(E) = Z(, 7), with:
@ T the Frobenius endomorphism, s.t. 72 = —p;
@ (the map

Wz, y) = (-2, 1),

where 2 € [F2 is a 4-th root of unity. Clearly, 5= =1,

And tm = —7e.
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Class group action party

o j =1728
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Class group action party

j=1728
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Class group action party

(=)
S
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Quaternion algebra?! WTF?2

The quaternion algebra B,  is:
@ A4-dimensional Q-vector space with basis (1, z, 7, k).

@ Anon-commutative division algebra' B, oo = Q(z, ) with the
relations:
'L'2:a, j2:_p7 Z]:_]Z:ky
for some a < 0 (depending on p).
@ All elements of B, o, are quadratic algebraic numbers.

® Bpoo ® Qp = M2y2(Qp) forall £ # p.

l.e., endomorphisms restricted to E[£¢] are just 2 x 2 matrices mod£°.

@ Bp o ® Risisomorphic to Hamilton’s quaternions.
@ By ® Qpisadivision algebra.

'All elements have inverses.
2What The Field?
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Supersingular graphs

@ Quaternion algebras have many

maximal orders.

@ For every maximal order type of By o / \
there are 1 or 2 curves over [F 2 having
endomorphism ring isomorphic to it.

@ Thereis a unique isogeny class of
supersingular curves over I, of size

~ p/l2.
@ Leftideals act on the set of maximal \'/

orders like isogenies.

Figure: 3-isogeny graph on Fg72.
@ The graph of Z-isogenies is

(£ + 1)-regular.
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Graphs lexicon

Degree:
k-regular:
Connected:
Distance:
Diameter:

Number of (outgoing/ingoing) edges.

All vertices have degree k.

There is a path between any two vertices.

The length of the shortest path between two vertices.
The longest distance between two vertices.

A1 > --- > Ap: The (ordered) eigenvalues of the adjacency matrix.
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Expander graphs

Proposition
If G is a k-regular graph, its largest and smallest eigenvalues satisfy

k=X > A > —k.

Expander families

An infinite family of connected k-regular graphs on n vertices is an
expander family if there exists an € > 0 such that all non-trivial eigenvalues
satisfy |A| < (1 — €)k for n large enough.

@ Expander graphs have short diameter (O(log n));

@ Random walks mix rapidly (after O(log n) steps, the induced
distribution on the vertices is close to uniform).
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Expander graphs from isogenies

Theorem (Pizer)

Let £ be fixed. The family of graphs of supersingular curves over IF 2 with
£-isogenies, as p — 00, is an expander family?.

9Even better, it has the Ramanujan property.

Theorem (Jao, Miller, Venkatesan)

Let © C Q(+/—D) be an order in a quadratic imaginary field. The graphs of
all curves over IF; with complex multiplication by O, with isogenies of prime
degree bounded? by (log ¢)%*¢, are expanders.

“May contain traces of GRH.
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Executive summary

@ Separable £-isogeny = finite kernel = subgroup of E[{],
> eigenspace of 7 iff F;-rational,
» distinct eigenvalues A # p define distinct directions on the crater.

@ Isogeny graphs have j-invariants for vertices and “some” isogenies for
edges.

@ By varying the choices for the vertex and the isogeny set, we obtain
graphs with different properties.

@ /-isogeny graphs of ordinary curves are volcanoes, (full) £-isogeny
graphs of supersingular curves are finite (£ + 1)-regular.

@ CM theory naturally leads to define graphs of horizontal isogenies
(both in the ordinary and the supersingular case) that are isomorphic
to Cayley graphs of class groups.

@ CM graphs are expanders. Supersingular full £-isogeny graphs are
Ramanujan.
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Thank you

https://defeo.lu/
¥ @luca_defeo
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Weil pairing

Let (N, p) = 1, fixany basis E[N] = (R, S). Forany points P, Q € E[N]
P=aR+bS
Q@ =cR+dS

the form det (P, Q) = det (¢ %) = ad — bc € Z/NZ
is bilinear, non-degenerate, and independent from the choice of basis.

Theorem
Let E/F, be a curve, there exists a Galois invariant bilinear map

ey : E[N] x E[N] — py C Fy,

called the Weil pairing of order N, and a primitive N-th root of unity ¢ € [,
such that
en(P, Q) = (P9,

The degree k of the smallest extension such that ¢ € IF ;x is called the
embedding degree of the pairing.

v
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Weil pairing and isogenies

Note
The Weil pairing is Galois invariant < det(n|E[N]) = g.

Theorem

Let¢ : E — E'beanisogenyand ¢ : E' — E itsdual.
Let ey be the Weil pairing of £ and e}, that of E’. Then, for

en(P, $(Q)) = en(4(P), Q),
forany P € E[N]and Q € E'[N].

Corollary

en(¢(P), $(Q)) = en (P, Q)*?.
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