
Mathematics of Isogeny-based Cryptography

Luca De Feo

IBM Research, Zürich

September 16, 2019
Isogeny-based Cryptography Workshop

Birmingham

Slides online at https://defeo.lu/docet

https://defeo.lu/docet


Projective space
Definition (Projective space)
Let �k an algebraically closed field, the projective space Pn(�k) is the set of
non-null (n + 1)-tuples (x0; : : : ; xn) 2 �kn modulo the equivalence relation

(x0; : : : ; xn) � (�x0; : : : ; �xn) with � 2 �k n f0g:

A class is denoted by (x0 : � � � : xn).

Luca De Feo (IBM Research) Maths of Isogeny Based Crypto Birmingham IBCWorkshop 2 / 42



Weierstrass equations

Let k be a field of
characteristic 6= 2; 3.
An elliptic curve defined over
k is the locus in P2(�k) of an
equation

Y 2Z = X 3 + aXZ 2 + bZ 3;

where a ; b 2 k and
4a3 + 27b2 6= 0.

O = (0 : 1 : 0) is the
point at infinity;
y2 = x 3 + ax + b is the
a�ine equation.
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Attention: arithmetic geometry!

E : y2 = x 3 � 2x + 1

Rational points:
E(Q) = f(1; 0); (0; 1); (0;�1);Og,

#E(Q(
p

5)) = 8,
. . .
#E(R) =1.
#E(C) =1.
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The group law

Bezout’s theorem
Every line cutsE in exactly
three points (counted with
multiplicity).

Define a group law such that
any three colinear points add
up to zero.

The law is algebraic
(it has formulas);
The law is commutative;
O is the group identity;
Opposite points have the
same x -value.

P

Q

R

P +Q
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What are elliptic curves?

For mathematicians
The smooth projective curves of genus 1 (with a distinguished point);
The simplest abelian varieties (dimension 1);
Finitely generated abelian groups of mysterious free rank (aka BSD
conjecture);
What you use to make examples.

For cryptographers
Finite abelian groups (o�en cyclic);
Easy to compute the order;
“2-dimensional” generalizations of �k (the roots of unity of k ). . .
. . .with bilinear maps (aka pairings)!
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Maps: isomorphisms

Isomorphisms
The only invertible algebraic maps between elliptic curves are of the form

(x ; y) 7! (u2x ;u3y)

for some u 2 �k .
They are group isomorphisms.

j -Invariant
LetE : y2 = x 3 + ax + b, its j -invariant is

j (E) = 1728
4a3

4a3 + 27b2 :

Two elliptic curvesE ;E 0 are isomorphic if and only if j (E) = j (E 0).
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Group structure
Torsion structure
LetE be defined over an algebraically closed field �k of characteristic p.

E [m ] ' Z=mZ� Z=mZ if p - m ,

Z=peZ ordinary case,
E [pe ] '

(
fOg supersingular case.

Finite fields (Hasse’s theorem)
LetE be defined over a finite field Fq , then

j#E(Fq)� q � 1j � 2
p

q :

In particular, there exist integers n1 and n2j gcd(n1; q � 1) such that

E(Fq) ' Z=n1Z� Z=n2Z:
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Maps: what’s scalar multiplication?

[n ] : P 7! P + P + � � �+ P| {z }
n times

AmapE ! E ,

a groupmorphism,
with finite kernel
(the torsion groupE [n ] ' (Z=nZ)2),
surjective (in the algebraic closure),
given by rational maps of degree n2.

(Separable) isogenies, finite subgroups:

0 ! H ! E
�! E 0 ! 0
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Isogenies: an example over F11

E : y2 = x 3 + x E 0 : y2 = x 3 � 4x

�(x ; y) =

 
x 2 + 1

x
; y

x 2 � 1
x 2

!

Kernel generator in red.
This is a degree 2map.
Analogous to x 7! x 2 in F�q .
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Maps: isogenies
Theorem
Let � : E ! E 0 be amap between elliptic curves. These conditions are
equivalent:

� is a surjective groupmorphism,
� is a groupmorphismwith finite kernel,
� is a non-constant algebraic map of projective varieties sending the
point at infinity ofE onto the point at infinity ofE 0.

If they hold � is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m
On any curve, an isogeny fromE to itself (i.e., an endomorphism):

[m ] : E ! E ;
P 7! [m ]P :
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Isogeny lexicon
Degree

� degree of the rational fractions defining the isogeny;
Roughmeasure of the information needed to encode it.

Separable, inseparable, cyclic
An isogeny � is separable i� deg � = #ker�.

GivenH � E finite, write � : E ! E=H for the unique separable
isogeny s.t. ker� = H .
� inseparable) p divides deg �.
Cyclic isogeny� separable isogeny with cyclic kernel.
I Non-example: the multiplication map [m ] : E ! E .

Rationality
GivenE defined over k , an isogeny � is rational if ker� is Galois invariant.
) � is represented by rational fractions with coe�icients in k .
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The dual isogeny

Let � : E ! E 0 be an isogeny of degreem . There is a unique isogeny
�̂ : E 0 ! E such that

�̂ � � = [m ]E ; � � �̂ = [m ]E 0 :

�̂ is called the dual isogeny of �; it has the following properties:
1 �̂ is defined over k if and only if � is;
2 [ � � = �̂ �  ̂ for any isogeny : E 0 ! E 00;
3 \ + � =  ̂ + �̂ for any isogeny : E ! E 0;
4 deg � = deg �̂;
5 ^̂� = �.
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Up to isomorphism

P

Q

R

P +Q

y2 = x 3 + ax + b �! j � 1728 4a3

4a3+27b2

j = 1728

�

j = 287496
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Up to isomorphism

PQ R
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�
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Isogeny graphs

Serre-Tate theorem
Two elliptic curvesE ;E 0 defined over a finite field Fq are isogenous
(over Fq ) i�#E(Fq) = #E 0(Fq).

Isogeny graphs
Vertices are curves up to
isomorphism,
Edges are isogenies up to
isomorphism.

Isogeny volcanoes
Curves are ordinary,
Isogenies all have degree a
prime `.
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What do isogeny graphs look like?

Torsion subgroups (` prime)
In an algebraically closed field:

E [`] = hP ;Qi ' (Z=`Z)2

+
There are exactly `+ 1 cyclic
subgroupsH � E of order `:

hP +Qi; hP + 2Qi; : : : ; hPi; hQi

+
There are exactly `+ 1 distinct
isogenies of degree `. (non-CM) 2-isogeny graph overC
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What happens over a finite field Fp?

Rational isogenies (` 6= p)
In the algebraic closure �Fp

E [`] = hP ;Qi ' (Z=`Z)2

However, an isogeny is defined over Fp only if its kernel is Galois invariant.

Enter the Frobenius map

� : E �! E
(x ; y) 7�! (x p ; yp)

E is seen here as a curve over �Fp .

The Frobenius action onE [`]

�(P) =

�(Q) =

aP + bQ

cP + dQ

 !
� : mod `

We identify �jE [`] to a conjugacy
class inGL(Z=`Z).
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What happens over a finite field Fp?

Galois invariant proper subgroups ofE [`]
=

eigenspaces of � 2 GL(Z=`Z)
=

rational isogenies of degree `

Howmany Galois invariant subgroups?
�jE [`] � � � 0

0 �

� ! `+ 1 isogenies

�jE [`] �
�
� 0
0 �

�
with � 6= � ! two isogenies

�jE [`] � � � �0 �

� ! one isogeny
�jE [`] has no eigenvalues in Z=`Z ! no isogeny

Luca De Feo (IBM Research) Maths of Isogeny Based Crypto Birmingham IBCWorkshop 18 / 42



What happens over a finite field Fp?

Galois invariant proper subgroups ofE [`]
=

eigenspaces of � 2 GL(Z=`Z)
=

rational isogenies of degree `

Howmany Galois invariant subgroups?
�jE [`] � � � 0

0 �

� ! `+ 1 isogenies

�jE [`] �
�
� 0
0 �

�
with � 6= � ! two isogenies

�jE [`] � � � �0 �

� ! one isogeny
�jE [`] has no eigenvalues in Z=`Z ! no isogeny

Luca De Feo (IBM Research) Maths of Isogeny Based Crypto Birmingham IBCWorkshop 18 / 42



Algebras, orders
A quadratic imaginary number field is an extension ofQ of the form
Q [
p�D ] for some non-squareD > 0.

A quaternion algebra is an algebra of the formQ+ �Q+ �Q+ ��Q,
where the generators satisfy the relations

�2; �2 2 Q; �2 < 0; �2 < 0; �� = ���:

Orders
LetK be a finitely generatedQ-algebra. An orderO � K is a subring ofK
that is a finitely generatedZ-module of maximal dimension. An order that is
not contained in any other order ofK is called a maximal order.

Examples:
Z is the only order contained inQ,
Z[i ] is the only maximal order ofQ(i),
Z[
p

5] is a non-maximal order ofQ(
p

5),
The ring of integers of a number field is its only maximal order,
In general, maximal orders in quaternion algebras are not unique.
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The endomorphism ring

The endomorphism ringEnd(E) of an elliptic curveE is the ring of all
isogeniesE ! E (plus the null map) with addition and composition.

Theorem (Deuring)
LetE be an elliptic curve defined over a field k of characteristic p.
End(E) is isomorphic to one of the following:

Z, only if p = 0
E is ordinary.

An orderO in a quadratic imaginary field:
E is ordinary with complex multiplication byO.

Only if p > 0, a maximal order in a quaternion algebraa:
E is supersingular.

a(ramified at p and1)
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The finite field case

Theorem (Hasse)
LetE be defined over a finite field. Its Frobenius endomorphism � satisfies
a quadratic equation

�2 � t� + q = 0

inEnd(E) for some jt j � 2
p

q , called the trace of �. The trace t is coprime
to q if and only ifE is ordinary.

SupposeE is ordinary, thenD� = t2 � 4q < 0 is the discriminant of Z[�].
K = Q(�) = Q(

p
D�) is the endomorphism algebra ofE .

Denote byOK its ring of integers, then

Z 6= Z[�] � End(E) � OK :

In the supersingular case, �may or may not be inZ, depending on q .
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Endomorphism rings of ordinary curves
Classifying quadratic orders
LetK be a quadratic number field, and letOK be its ring of integers.

Any orderO � K can be written asO = Z+ fOK for an integer f ,
called the conductor ofO, denoted by [Ok : O].
If dK is the discriminant ofK , the discriminant ofO is f 2dK .
IfO;O0 are two orders with discriminants d ; d 0, thenO � O0 i� d 0jd .

OK

Z+ 2OK Z+ 3OK Z+ 5OK

Z+ 6OK Z+ 10OK Z+ 15OK

Z[�] ' Z+ 30OK
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Volcanology (Kohel 1996)
LetE ;E 0 be curves with respective
endomorphism ringsO;O0 � K .
Let � : E ! E 0 be an isogeny of
prime degree `, then:

ifO = O0, � is horizontal;
if [O0 : O] = `, � is ascending;
if [O : O0] = `, � is descending.

End(E)

OK

Z[�]

Ordinary isogeny volcano of degree ` = 3.
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Volcanology (Kohel 1996)

LetE be ordinary,
End(E) � K .

OK : maximal order ofK ,
DK : discriminant ofK .

Height= v`([OK : Z[�]]).

How large is the crater?

�DK
`

�
= �1

�DK
`

�
= 0

�DK
`

�
= +1

Horizontal Ascending Descending
` - [OK : O]] ` - [O : Z[�]] 1 +

�
DK
`

�
` - [OK : O]] ` j [O : Z[�]] 1 +

�
DK
`

�
`�

�
DK
`

�
` j [OK : O]] ` j [O : Z[�]] 1 `
` j [OK : O]] ` - [O : Z[�]] 1
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How large is the crater of a volcano?

LetEnd(E) = O � Q(p�D). Define
I(O), the group of invertible fractional ideals,
P(O), the group of principal ideals,

The class group
The class group ofO is

Cl(O) = I(O)=P(O):

It is a finite abelian group.
Its order h(O) is called the class number ofO.
It arises as the Galois group of an abelian extension ofQ(

p�D).
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Complex multiplication
The a-torsion

Let a � O be an (integral invertible) ideal ofO;
LetE [a] be the subgroup ofE annihilated by a:

E [a] = fP 2 E j �(P) = 0 for all � 2 ag;
Let � : E ! Ea, whereEa = E=E [a].

ThenEnd(Ea) = O (i.e., � is horizontal).

Theorem (Complex multiplication)
The action on the set of elliptic curves with complex multiplication byO
defined by a � j (E) = j (Ea) factors throughCl(O), is faithful and transitive.

Corollary

LetEnd(E) have discriminantD . Assume that
�

D
`

�
= 1, thenE is on a

crater of sizeN of an `-volcano, andN jh(End(E))
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Complex multiplication graphs

E1

E2

E3
E4

E5

E6

E7

E8
E9

E10

E11

E12

Vertices are elliptic
curves with complex
multiplication by OK
(i.e., End(E) ' OK �
Q(
p�D)).

Edges are horizontal
isogenies of bounded
prime degree.

degree 2

degree 3

degree 5

Isomorphic to a Cayley
graph ofCl(OK ).
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Supersingular endomorphisms

Recall, a curveE over a field Fq of characteristic p is supersingular i�

�2 � t� + q = 0

with t = 0 mod p.

Case: t = 0 ) D� = �4q
Only possibility forE=Fp ,
E=Fp has CM by an order ofQ(

p�p), similar to the ordinary case.

Case: t = �2
p

q ) D� = 0

General case forE=Fq , when q is an even power.
� = �pq , hence no complex multiplication.

We will ignore marginal cases: t = �pq ;�p2q ;�p3q .
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Supersingular complex multiplication
LetE=Fp be a supersingular curve, then �2 = �p, and

� =
�p�p 0

0 �p�p

�
mod `

for any ` s.t.
�
�p
`

�
= 1.

Theorem (Delfs, Galbraith 2016)
LetEndFp (E) denote the ring of Fp-rational endomorphisms ofE . Then

Z[�] � EndFp (E) � Q(p�p):

Orders ofQ(
p�p)

If p = 1 mod 4, thenZ[�] is the maximal order.
If p = �1 mod 4, thenZ[�+1

2 ] is the maximal order,
and [Z[�+1

2 ] : Z[�]] = 2.
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Supersingular CM graphs

2-volcanoes, p = �1 mod 4

Z[�+1
2 ]

Z[�]

2-graphs, p = 1 mod 4

Z[�]

All other `-graphs are cycles of horizontal isogenies i�
�
�p
`

�
= 1.
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The full endomorphism ring

Theorem (Deuring)
LetE be a supersingular elliptic curve, then

E is isomorphic to a curve defined over Fp2 ;
Every isogeny ofE is defined over Fp2 ;
Every endomorphism ofE is defined over Fp2 ;
End(E) is isomorphic to a maximal order in a quaternion algebra
ramified at p and1.

In particular:
IfE is defined over Fp , thenEndFp (E) is strictly contained inEnd(E).
Some endomorphisms do not commute!
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An example

The curve of j -invariant 1728

E : y2 = x 3 + x

is supersingular over Fp i� p = �1 mod 4.

Endomorphisms
End(E) = Zh�; �i, with:

� the Frobenius endomorphism, s.t. �2 = �p;
� the map

�(x ; y) = (�x ; iy);

where i 2 Fp2 is a 4-th root of unity. Clearly, �2 = �1.
And �� = ���.
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Class group action party

j = 1728

Cl(�4p)

Cl(�4)
j = 0Cl(�3)

Cl(�23)

Cl(�79)
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Quaternion algebra?! WTF?2

The quaternion algebraBp;1 is:
A 4-dimensionalQ-vector space with basis (1; i ; j ; k).
A non-commutative division algebra1 Bp;1 = Qhi ; j iwith the
relations:

i2 = a ; j 2 = �p; ij = �ji = k ;

for some a < 0 (depending on p).
All elements ofBp;1 are quadratic algebraic numbers.
Bp;1 
Q` 'M2�2(Q`) for all ` 6= p.
I.e., endomorphisms restricted toE [`e ] are just 2� 2matrices mod`e .
Bp;1 
 R is isomorphic to Hamilton’s quaternions.
Bp;1 
Qp is a division algebra.

1All elements have inverses.
2What The Field?
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Supersingular graphs

Quaternion algebras have many
maximal orders.
For every maximal order type ofBp;1
there are 1 or 2 curves over Fp2 having
endomorphism ring isomorphic to it.
There is a unique isogeny class of
supersingular curves over �Fp of size
� p=12.
Le� ideals act on the set of maximal
orders like isogenies.
The graph of `-isogenies is
(`+ 1)-regular.

Figure: 3-isogeny graph on F972 .
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Graphs lexicon

Degree: Number of (outgoing/ingoing) edges.
k -regular: All vertices have degree k .
Connected: There is a path between any two vertices.
Distance: The length of the shortest path between two vertices.
Diameter: The longest distance between two vertices.

�1 � � � � � �n : The (ordered) eigenvalues of the adjacency matrix.
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Expander graphs

Proposition
IfG is a k -regular graph, its largest and smallest eigenvalues satisfy

k = �1 � �n � �k :

Expander families
An infinite family of connected k -regular graphs on n vertices is an
expander family if there exists an � > 0 such that all non-trivial eigenvalues
satisfy j�j � (1� �)k for n large enough.

Expander graphs have short diameter (O(logn));
Randomwalks mix rapidly (a�erO(logn) steps, the induced
distribution on the vertices is close to uniform).
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Expander graphs from isogenies

Theorem (Pizer)
Let ` be fixed. The family of graphs of supersingular curves over Fp2 with
`-isogenies, as p !1, is an expander familya.

aEven better, it has the Ramanujan property.

Theorem (Jao, Miller, Venkatesan)
LetO � Q(p�D) be an order in a quadratic imaginary field. The graphs of
all curves over Fq with complex multiplication byO, with isogenies of prime
degree boundeda by (log q)2+� , are expanders.

aMay contain traces of GRH.
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Executive summary

Separable `-isogeny = finite kernel = subgroup ofE [`],
I eigenspace of � i� Fq -rational,
I distinct eigenvalues � 6= � define distinct directions on the crater.

Isogeny graphs have j -invariants for vertices and “some” isogenies for
edges.
By varying the choices for the vertex and the isogeny set, we obtain
graphs with di�erent properties.
`-isogeny graphs of ordinary curves are volcanoes, (full) `-isogeny
graphs of supersingular curves are finite (`+ 1)-regular.
CM theory naturally leads to define graphs of horizontal isogenies
(both in the ordinary and the supersingular case) that are isomorphic
to Cayley graphs of class groups.
CM graphs are expanders. Supersingular full `-isogeny graphs are
Ramanujan.
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Thank you
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Weil pairing
Let (N ; p) = 1, fix any basisE [N ] = hR;Si. For any pointsP ;Q 2 E [N ]

P = aR + bS
Q = cR + dS

the form detN (P ;Q) = det
� a b

c d
�
= ad � bc 2 Z=NZ

is bilinear, non-degenerate, and independent from the choice of basis.

Theorem
LetE=Fq be a curve, there exists a Galois invariant bilinear map

eN : E [N ]� E [N ] �! �N � �Fq ;

called the Weil pairing of orderN , and a primitiveN -th root of unity � 2 �Fq
such that

eN (P ;Q) = �detN (P ;Q):

The degree k of the smallest extension such that � 2 Fqk is called the
embedding degree of the pairing.
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Weil pairing and isogenies

Note
The Weil pairing is Galois invariant , det(�jE [N ]) = q .

Theorem
Let � : E ! E 0 be an isogeny and �̂ : E 0 ! E its dual.
Let eN be the Weil pairing ofE and e 0N that ofE 0. Then, for

eN (P ; �̂(Q)) = e 0N (�(P);Q);

for anyP 2 E [N ] andQ 2 E 0[N ].

Corollary

e 0N (�(P); �(Q)) = eN (P ;Q)deg �:
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