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Why isogenies?

Six families still in NIST post-quantum
competition:

Lattices 9 encryption 3 signature
Codes 7 encryption
Multivariate 4 signature
Isogenies 1 encryption
Hash-based 1 signature
MPC 1 signature
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Why isogenies?

Six families still in NIST post-quantum
competition:

Lattices 9 encryption 3 signature
Codes 7 encryption
Multivariate 4 signature
Isogenies 1 encryption
Hash-based 1 signature
MPC 1 signature

Public key size
NIST-1 level (AES128)

(not to scale)

Codes
1 – 300 KB

Lattices
0.5 – 10 KB

Isogenies
209 B
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Why isogenies?

Six families still in NIST post-quantum
competition:

Lattices 9 encryption 3 signature
Codes 7 encryption
Multivariate 4 signature
Isogenies 1 encryption
Hash-based 1 signature
MPC 1 signature

Encryption performance
NIST-1 level (AES128)

(not to scale)

Codes
1 Mcycles

Lattices
0.5 – 5
Mcycles

Isogenies
190 Mcycles
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“We found that CECPQ2 ([NTRU] the ostrich) outperformed CECPQ2b ([SIKE] the
turkey), for the majority of connections in the experiment, indicating that fast algo-
rithmswith large keysmay bemore suitable for TLS than slow algorithmswith small
keys. However, we observed the opposite—that CECPQ2b outperformed CECPQ2—for
the slowest connections on some devices, including Windows computers and Android
mobile devices. One possible explanation for this is packet fragmentation and packet
loss.”

—K. Kwiatkowski, L. Valenta (Cloudflare)
The TLS Post-Quantum Experiment

https://blog.cloudflare.com/the-tls-post-quantum-experiment/
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Weierstrass equations

Let k be a field of characteristic 6= 2; 3.
An elliptic curve defined over k is the
locus in P2(�k) of an equation

Y 2Z = X 3 + aXZ 2 + bZ 3;

where a ; b 2 k and 4a3 + 27b2 6= 0.

O = (0 : 1 : 0) is the point at
infinity;
y2 = x 3 + ax + b is the a�ine
equation.
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Attention: arithmetic geometry!

E : y2 = x 3 � 2x + 1

Rational points:
E(Q) = f(1; 0); (0; 1); (0;�1);Og,

#E(Q(
p

5)) = 8,
. . .
#E(R) =1.
#E(C) =1.
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The group law

Bezout’s theorem
Every line cutsE in exactly three
points (counted with multiplicity).

Define a group law such that any three
colinear points add up to zero.

The law is algebraic
(it has formulas);
The law is commutative;
O is the group identity;
Opposite points have the same
x -value.

P

Q

R

P +Q
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Maps: isomorphisms

Isomorphisms
The only invertible algebraic maps between elliptic curves are of the form

(x ; y) 7! (u2x ;u3y)

for some u 2 �k .
They are group isomorphisms.

j -Invariant
LetE : y2 = x 3 + ax + b, its j -invariant is

j (E) = 1728
4a3

4a3 + 27b2 :

Two elliptic curvesE ;E 0 are isomorphic if and only if j (E) = j (E 0).
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Group structure
Torsion structure
LetE be defined over an algebraically closed field �k of characteristic p.

E [m ] ' Z=mZ� Z=mZ if p - m ,

Z=peZ ordinary case,
E [pe ] '

(
fOg supersingular case.

Finite fields (Hasse’s theorem)
LetE be defined over a finite field Fq , then

j#E(Fq)� q � 1j � 2
p

q :

In particular, there exist integers n1 and n2j gcd(n1; q � 1) such that

E(Fq) ' Z=n1Z� Z=n2Z:

Luca De Feo (IBM Research Zürich) Isogeny Based Cryptography https://defeo.lu/docet Simula UiB 8 / 80

https://defeo.lu/docet


Maps: what’s scalar multiplication?

[n ] : P 7! P + P + � � �+ P| {z }
n times

AmapE ! E ,

a groupmorphism,
with finite kernel
(the torsion groupE [n ] ' (Z=nZ)2),
surjective (in the algebraic closure),
given by rational maps of degree n2.

(Separable) isogenies, finite subgroups:

0! H ! E
�! E 0 ! 0
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Isogenies: an example over F11
E : y2 = x 3 + x E 0 : y2 = x 3 � 4x

�(x ; y) =

 
x 2 + 1

x
; y

x 2 � 1
x 2

!

Kernel generator in red.
This is a degree 2map.
Analogous to x 7! x 2 in F�q .
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Maps: isogenies
Theorem
Let � : E ! E 0 be amap between elliptic curves. These conditions are equivalent:

� is a surjective groupmorphism,
� is a groupmorphismwith finite kernel,
� is a non-constant algebraic map of projective varieties sending the point at infinity ofE
onto the point at infinity ofE 0.

If they hold � is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m
On any curve, an isogeny fromE to itself (i.e., an endomorphism):

[m ] : E ! E ;
P 7! [m ]P :
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Isogeny lexicon
Degree
� degree of the rational fractions defining the isogeny;
Roughmeasure of the information needed to encode it.

Separable, inseparable, cyclic
An isogeny � is separable i� deg � = #ker�.

GivenH � E finite, write � : E ! E=H for the unique separable isogeny s.t. ker� = H .
� inseparable) p divides deg �.
Cyclic isogeny� separable isogeny with cyclic kernel.
I Non-example: the multiplication map [m ] : E ! E .

Rationality
GivenE defined over k , an isogeny � is rational if ker� is Galois invariant.
) � is represented by rational fractions with coe�icients in k .
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The dual isogeny

Let � : E ! E 0 be an isogeny of degreem . There is a unique isogeny �̂ : E 0 ! E such that

�̂ � � = [m ]E ; � � �̂ = [m ]E 0 :

�̂ is called the dual isogeny of �; it has the following properties:
1 �̂ is defined over k if and only if � is;
2 [ � � = �̂ �  ̂ for any isogeny : E 0 ! E 00;
3 \ + � =  ̂ + �̂ for any isogeny : E ! E 0;
4 deg � = deg �̂;
5 ^̂� = �.
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Up to isomorphism

P

Q

R

P +Q

y2 = x 3 + ax + b �! j � 1728 4a3

4a3+27b2

j = 1728

�

j = 287496
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Isogeny graphs

Serre-Tate theorem
Two elliptic curvesE ;E 0 defined over a finite field Fq are isogenous
(over Fq ) i�#E(Fq) = #E 0(Fq).

Isogeny graphs
Vertices are curves up to isomorphism,
Edges are isogenies up to isomorphism.

Isogeny volcanoes
Curves are ordinary,
Isogenies all have degree a prime `.
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The endomorphism ring
The endomorphism ringEnd(E) of an elliptic curveE is the ring of all isogeniesE ! E (plus
the null map) with addition and composition.

Theorem (Deuring)
LetE be an elliptic curve defined over a field k of characteristic p.
End(E) is isomorphic to one of the following:

Z, only if p = 0
E is ordinary.

An orderO in a quadratic imaginary field:
E is ordinary with complex multiplication byO.

Only if p > 0, a maximal order in a quaternion algebraa:
E is supersingular.

a(ramified at p and1)
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Algebras, orders
A quadratic imaginary number field is an extension ofQ of the formQ(

p�D) for some
non-squareD > 0.
A quaternion algebra is an algebra of the formQ+ �Q+ �Q+ ��Q, where the generators
satisfy the relations

�2; �2 2 Q; �2 < 0; �2 < 0; �� = ���:

Orders
LetK be a finitely generatedQ-algebra. An orderO � K is a subring ofK that is a finitely
generatedZ-module of maximal dimension. An order that is not contained in any other order of
K is called a maximal order.

Examples: Z is the only order contained inQ,
Z[i ] is the only maximal order ofQ(i),
Z[
p

5] is a non-maximal order ofQ(
p

5),
The ring of integers of a number field is its only maximal order,
In general, maximal orders in quaternion algebras are not unique.
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The finite field case

Theorem (Hasse)
LetE be defined over a finite field. Its Frobenius endomorphism � satisfies a quadratic equation

�2 � t� + q = 0

inEnd(E) for some jt j � 2
p

q , called the trace of �. The trace t is coprime to q if and only ifE
is ordinary.

SupposeE is ordinary, thenD� = t2 � 4q < 0 is the discriminant of Z[�].
K = Q(�) = Q(

p
D�) is the endomorphism algebra ofE .

Denote byOK its ring of integers, then

Z 6= Z[�] � End(E) � OK :

In the supersingular case, �may or may not be inZ, depending on q .
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Endomorphism rings of ordinary curves

Classifying quadratic orders
LetK be a quadratic number field, and letOK be its
ring of integers.

Any orderO � K can be written as
O = Z+ fOK for an integer f , called the
conductor ofO, denoted by [OK : O].
If dK is the discriminant ofK , the discriminant
ofO is f 2dK .
IfO;O0 are two orders with discriminants d ; d 0,
thenO � O0 i� d 0jd .

OK

Z+ 2OK Z+ 3OK Z+ 5OK

Z+ 6OK Z+ 10OK Z+ 15OK

Z[�] ' Z+ 30OK
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Volcanology (Kohel 1996)

LetE ;E 0 be curves with respective
endomorphism ringsO;O0 � K .
Let � : E ! E 0 be an isogeny of
prime degree `, then:

ifO = O0, � is horizontal;
if [O0 : O] = `, � is ascending;
if [O : O0] = `, � is descending.

End(E)

OK

Z[�]

Ordinary isogeny volcano of degree ` = 3.
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Volcanology (Kohel 1996)

LetE be ordinary,End(E) � K .

OK : maximal order ofK ,
DK : discriminant ofK .

Height= v`([OK : Z[�]]).

How large is the crater?

�DK
`

�
= �1

�DK
`

�
= 0

�DK
`

�
= +1

Horizontal Ascending Descending
` - [OK : O] ` - [O : Z[�]] 1 +

�
DK
`

�
` - [OK : O] ` j [O : Z[�]] 1 +

�
DK
`

�
`�

�
DK
`

�
` j [OK : O] ` j [O : Z[�]] 1 `
` j [OK : O] ` - [O : Z[�]] 1
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How large is the crater of a volcano?

LetEnd(E) = O � Q(p�D). Define
I(O), the group of invertible fractional ideals,
P(O), the group of principal ideals,

The class group
The class group ofO is

Cl(O) = I(O)=P(O):

It is a finite abelian group.
Its order h(O) is called the class number ofO.
It arises as the Galois group of an abelian extension ofQ(

p�D).
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Complex multiplication
The a-torsion
Let a � O be an (integral invertible) ideal ofO; LetE [a] be the subgroup ofE annihilated by a:

E [a] = fP 2 E j �(P) = 0 for all � 2 ag;

Let � : E ! Ea, whereEa = E=E [a]. ThenEnd(Ea) = O (i.e., � is horizontal).

Theorem (Complex multiplication)
The action on the set of elliptic curves with complex multiplication byO defined by
a � j (E) = j (Ea) factors throughCl(O), is faithful and transitive.

Corollary

LetEnd(E) have discriminantD . Assume that
�

D
`

�
= 1, thenE is on a crater of sizeN of an

`-volcano, andN jh(End(E)).
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Complex multiplication graphs

E1

E2

E3
E4

E5

E6

E7

E8
E9

E10

E11

E12

Vertices are elliptic curves with
complex multiplication by OK (i.e.,
End(E) ' OK � Q(

p�D)).

Edges are horizontal isogenies of
bounded prime degree.

degree 2

degree 3

degree 5

Isomorphic to a Cayley graph of
Cl(OK ).
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Supersingular endomorphisms
Recall, a curveE over a field Fq of characteristic p is supersingular i�

�2 � t� + q = 0

with t = 0 mod p.

Case: t = 0 ) D� = �4q
Only possibility forE=Fp ,
E=Fp has CM by an order ofQ(

p�p), similar to the ordinary case.

Case: t = �2
p

q ) D� = 0

General case forE=Fq , when q is an even power.
� = �pq 2 Z, hence no complex multiplication.

We will ignore marginal cases: t = �pq ;�p2q ;�p3q .
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Supersingular complex multiplication

LetE=Fp be a supersingular curve, then �2 = �p.

Theorem (Delfs, Galbraith 2016)
LetEndFp (E) denote the ring of Fp-rational endomorphisms ofE . Then

Z[�] � EndFp (E) � Q(p�p):

Orders ofQ(
p�p)

If p = 1 mod 4, thenZ[�] is the maximal order.
If p = �1 mod 4, thenZ[�+1

2 ] is the maximal order, and [Z[�+1
2 ] : Z[�]] = 2.
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Supersingular CM graphs
2-volcanoes, p = �1 mod 4

Z[�+1
2 ]

Z[�]

2-graphs, p = 1 mod 4

Z[�]

All other `-graphs are cycles of horizontal isogenies i�
�
�p
`

�
= 1.
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The full endomorphism ring

Theorem (Deuring)
LetE be a supersingular elliptic curve, then

E is isomorphic to a curve defined over Fp2 ;
Every isogeny ofE is defined over Fp2 ;
Every endomorphism ofE is defined over Fp2 ;
End(E) is isomorphic to a maximal order in a quaternion algebra ramified at p and1.

In particular:
IfE is defined over Fp , thenEndFp (E) is strictly contained inEnd(E).
Some endomorphisms do not commute!

Luca De Feo (IBM Research Zürich) Isogeny Based Cryptography https://defeo.lu/docet Simula UiB 28 / 80

https://defeo.lu/docet


An example

The curve of j -invariant 1728
E : y2 = x 3 + x

is supersingular over Fp i� p = �1 mod 4.

Endomorphisms
End(E) = Zh�; �i, with:

� the Frobenius endomorphism, s.t. �2 = �p;
� the map

�(x ; y) = (�x ; iy);

where i 2 Fp2 is a 4-th root of unity. Clearly, �2 = �1.
And �� = ���.
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Class group action party

j = 1728

Cl(�4p)

Cl(�4)
j = 0Cl(�3)

Cl(�23)

Cl(�79)
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Supersingular graphs

Quaternion algebras have manymaximal orders.
For every maximal order type ofBp;1 there are 1 or
2 curves over Fp2 having endomorphism ring
isomorphic to it.
There is a unique isogeny class of supersingular
curves over �Fp of size� p=12.
Le� ideals act on the set of maximal orders like
isogenies.
The graph of `-isogenies is (`+ 1)-regular. Figure: 3-isogeny graph on F972 .
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Graphs lexicon

Degree: Number of (outgoing/ingoing) edges.
k -regular: All vertices have degree k .
Connected: There is a path between any two vertices.
Distance: The length of the shortest path between two vertices.
Diameter: The longest distance between two vertices.

�1 � � � � � �n : The (ordered) eigenvalues of the adjacency matrix.
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Expander graphs

Proposition
IfG is a k -regular graph, its largest and smallest eigenvalues satisfy

k = �1 � �n � �k :

Expander families
An infinite family of connected k -regular graphs on n vertices is an expander family if there
exists an � > 0 such that all non-trivial eigenvalues satisfy j�j � (1� �)k for n large enough.

Expander graphs have short diameter:O(logn);
Randomwalks mix rapidly: a�erO(logn) steps, the induced distribution on the vertices is
close to uniform.
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Expander graphs from isogenies

Theorem (Pizer)
Let ` be fixed. The family of graphs of supersingular curves over Fp2 with `-isogenies, as p !1,
is an expander familya.

aEven better, it has the Ramanujan property.

Theorem (Jao, Miller, Venkatesan)
LetO � Q(p�D) be an order in a quadratic imaginary field. The graphs of all curves over Fq
with complex multiplication byO, with isogenies of prime degree boundeda by (log q)2+� , are
expanders.

aMay contain traces of GRH.
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Executive summary

Separable `-isogeny = finite kernel = subgroup ofE [`] (= ideal of norm `),
Isogeny graphs have j -invariants for vertices and “some” isogenies for edges.
By varying the choices for the vertex and the isogeny set, we obtain graphs with di�erent
properties.
`-isogeny graphs of ordinary curves are volcanoes, (full) `-isogeny graphs of supersingular
curves are finite (`+ 1)-regular.
CM theory naturally leads to define graphs of horizontal isogenies (both in the ordinary and
the supersingular case) that are isomorphic to Cayley graphs of class groups.
CM graphs are expanders. Supersingular full `-isogeny graphs are Ramanujan.
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The beauty and the beast (credit: Lorenz Panny)

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

Both.
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The beauty and the beast (credit: Lorenz Panny)

At this time, there are two distinct families of systems:

Fp

CSIDH [pron.: sea-side]
https://csidh.isogeny.org

Fp2

SIDH
https://sike.org
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Brief history of isogeny-based cryptography
1997 Couveignes introduces the Hard Homogeneous Spaces framework. His work stays

unpublished for 10 years.
2006 Rostovtsev & Stolbunov independently rediscover Couveignes ideas, suggest

isogeny-based Di�ie–Hellman as a quantum-resistant primitive.
2006-2010 Other isogeny-based protocols by Teske and Charles, Goren & Lauter.
2011-2012 D., Jao & Plût introduce SIDH, an e�icient post-quantum key exchange inspired by

Couveignes, Rostovtsev, Stolbunov, Charles, Goren, Lauter.
2017 SIDH is submitted to the NIST competition (with the name SIKE, only

isogeny-based candidate).
2018 D., Kie�er & Smith resurrect the Couveignes–Rostovtsev–Stolbunov protocol,

Castryck, Lange, Martindale, Panny & Renes create an e�icient variant named
CSIDH.

2019 The year of proofs of isogeny knowledge: SeaSign (D. & Galbraith; Decru, Panny &
Vercauteren), CSI-FiSh (Beullens, Kleinjung & Vercauteren), VDF (D., Masson, Petit
& Sanso), threshold (D. & Meyer).
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Elliptic curves
LetE : y2 = x 3 + ax + b be an elliptic curve. . .

P

Q

R

P +Q
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Elliptic curves
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The QUANTHOMMenace
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Basically every isogeny-based key-exchange...

Public curve

Public curve

Shared secret
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Hard Homogeneous Spaces1

Principal Homogeneous Space
G � E : A (finite) set E acted upon by a group G faithfully and transitively:

� : G � E �! E
g � E 7�! E 0

Compatibility: g0 � (g � E) = (g0g) � E for all g; g0 2 G andE 2 E ;
Identity: e � E = E if and only if e 2 G is the identity element;

Transitivity: for allE ;E 0 2 E there exist a unique g 2 G such that g � E 0 = E .

Example: the set of elliptic curves with complex multiplication byO
is a PHS for the class groupCl(O).

1Couveignes 2006.
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Hard Homogeneous Spaces
Hard Homogeneous Space (HHS)
A Principal Homogeneous Space G � E such that:

EvaluatingE 0 = g � E is easy;
Inverting the action is hard.

Discrete logarithms in G = hgi are easy , there is an e�ective isomorphism

Z=NZ ! G
a 7�! ga

Then we like to see E as an HHS forZ=NZ:
Z=NZ� E �! E

[a ]E 7�! ga � E
Warning: [a ][b]E = [a + b]E !!!
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HHS Di�ie–Hellman

Goal: Alice and Bob have never met before. They are chatting over a public channel, and
want to agree on a shared secret to start a private conversation.

Setup: They agree on a (large) HHS hgi � E of orderN .

Alice Bob

pick random a 2 Z=NZ
computeEA = [a ]E0

pick random b 2 Z=NZ
computeEB = [b]E0EA

EB

Shared secret is [a ]EB = [a + b]E0 = [b]EA
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HHSDH from complex multiplication

Obstacles:
We don’t want to wait for a quantum computer for
solving discrete logs inCl(O)!
Until then, even the group size ofCl(O) is unknown.
Only ideals of small norm (isogenies of small degree)
are e�icient to evaluate.

Solution:
Restrict to elements ofCl(O) of the form

g =
Y

aei
i

for a basis of ai of small norm.
Equivalent to doing isogeny walks of smooth degree.

E1

E2
E3

E4

E5

E6

E7

E8
E9

E10

E11

E12
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CSIDH key exchange

E0

EA

EB

EBA

= EAB

Public parameters:
A supersingular curveE0=Fp ;
A set of small prime degree isogenies.

1 Alice takes a secret randomwalk
�A : E0 ! EA of lengthO(log p);

2 Bob does the same;
3 They publishEA andEB ;
4 Alice repeats her secret walk �A
starting fromEB .

5 Bob repeats his secret walk �B
starting fromEA.
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CSIDH data flow

Your secret: a vector of number of isogeny steps for each degree

�
5; 1;�4; : : :

�

Your public key: (the j -invariant of) a supersingular elliptic curve

j = 0x23baf75419531a44f3b97cc9d8291a275047fcdae0c9a0c0ebb993964f821f2

0c11058a4200ff38c4a85e208345300033b0d3119ff4a7c1be0acd62a622002a9
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Quantum security
Fact: Shor’s algorithm does not apply to Di�ie-Hellman protocols from group actions.

Subexponential attack exp(
p
log p log log p)

Reduction to the hidden shi� problem by evaluating the class group action in quantum
superspositiona (subexpoential cost);
Well known reduction from the hidden shi� to the dihedral (non-abelian) hidden subgroup
problem;
Kuperberg’s algorithmb solves the dHSP with a subexponential number of class group
evaluations.
Recent workc suggests that 264-qbit security is achieved somewhere in 512 < log p < 1024.

aChilds, Jao, and Soukharev 2014.
bKuperberg 2005; Regev 2004; Kuperberg 2013.
cBonnetain and Naya-Plasencia 2018; Bonnetain and Schrottenloher 2018; Biasse, Jacobson Jr, and

Iezzi 2018; Jao, LeGrow, Leonardi, and Ruiz-Lopez 2018; Bernstein, Lange, Martindale, and Panny 2018.
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Key exchange with supersingular curves (2011)
Good news: there is no action of a commutative class group.
Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two di�erent isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on F972 .
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Key exchange with supersingular curves (2011)
Fix small primes `A, `B ;
No canonical labeling of the `A- and `B -isogeny graphs; however. . .

Walk of length eA
=

Isogeny of degree `eA
A

=
Kernel hPi � E [`eA

A ]

ker� = hPi � E [`eA
A ]

ker = hQi � E [`eB
B ]

ker�0 = h (P)i
ker 0 = h�(Q)i

E E=hPi

E=hQi E=hP ;Qi

�

�0

  0

Luca De Feo (IBM Research Zürich) Isogeny Based Cryptography https://defeo.lu/docet Simula UiB 51 / 80

https://defeo.lu/docet


Supersingular Isogeny Di�ie-Hellman2

Parameters:
Prime p such that p + 1 = `aA`

b
B ;

Supersingular curve
E ' (Z=(p + 1)Z)2;

E [`aA] = hPA;QAi;
E [`bB ] = hPB ;QB i.

Secret data:
RA = mAPA + nAQA,

RB = mBPB + nBQB ,

E

E=hRAi

�(PB )

�(QB )

E=hRBi

 (PA)

 (QA)

E=hRAi
�(RB )

' E=hRA;RBi ' E=hRB i
 (RA)

�  

 0 �0

�(RB )  (RA)

2Jao and De Feo 2011; De Feo, Jao, and Plût 2014.
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From 10minutes to 10ms in 20 years

1996

Couveignes’ key exchange

2006

Rostovstev & Stolbunov (> 5 min)

2011

SIDH (500ms) (Jao and D.)

2012

SIDH (50ms) (D., Jao, Plût)

2016

SIDH (30ms) (Costello, Longa, Naherig)

2017

SIKE (10ms) (NIST candidate)

2018

CSIDH (50ms)

2019

CSIDH (35ms) (Meyer, Reith)
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CSIDH vs SIDH CSIDH SIDH
Speed (on x64 arch., NIST 1) � 35ms � 6ms
Public key size (NIST 1) 64B 346B
Key compression

�

speed � 11ms

�

size 209B
Submitted to NIST no yes
TRL 4 6
Best classical attack p1=4 p1=4 (p3=8)
Best quantum attack ~O

�
3
p

log3 p
�

p1=6 (p3=8)
Key size scales quadratically linearly
CPA security yes yes
CCA security yes Fujisaki-Okamoto
Constant time it’s complicated yes
Non-interactive key exchange yes no
Signatures short but (slow j do not scale) big and slow
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Why prove a secret isogeny?
Public: CurvesE ;E 0

Secret: An isogeny walkE ! E 0

Why?
For interactive identification;
For signing messages;
For validating public keys (esp. SIDH);
More. . .

Some properties
Zero knowledge

Statistical Computational Quantum resistance Succinctness
CSIDH X X/sort of
SIDH X X

Pairings X
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Security assumptions in Isogeny-based Cryptography

Isogeny walk problem
Input Two isogenous elliptic curvesE ;E 0 over Fq .

Output A pathE ! E 0 in an isogeny graph.

SIDH problem (1)
Input Elliptic curvesE ;E 0 over Fq , isogenous of degree `eA

A .
Output The unique pathE ! E 0 of length eA in the `A-isogeny graph.

SIDH problem (2)
Input Elliptic curvesE ;E 0 over Fq , isogenous of degree `eA

A ;
The action of the isogeny onE [`eB

B ].
Output The unique pathE ! E 0 of length eA in the `A-isogeny graph.
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A�-protocol from Di�ie–Hellman3

A key pair (s ; gs);

Commit to a random element gr ;
Challenge with bit b 2 f0; 1g;
Respond with c = r � b � s mod #G ;
Verify that gc(gs)b = gr .

Zero-knowledge
Does not leak because:

c is uniformly distributed and independent from s .

Unlike Schnorr, compatible with
group action Di�ie–Hellman.

g gss

gr

r r � s

3Kids, do not try this at home! Use Schnorr!
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E1 Es
gs

Er

gr gr�s
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The trouble with groups of unknown structure

In CSIDH secrets look like: g~s = gs2
2 gs3

3 gs5
5 � � �

the elements gi are fixed,
the secret is the exponent vector
~s = (s2; s3; : : : ) 2 [�B ;B ]n ,
secrets must be sampled in a box
[�B ;B ]n “large enough”. . .

The leakage

With~s ; ~r $ [�B ;B ]n , the distribution of ~r � ~s
depends on the long term secret~s !

+B

�B

�

+B

�B

=

+B

�B
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The two fixes

Do like the lattice people
SeaSign: D. and Galbraith 2019

Use Fiat–Shamir with aborts (Lyubashevsky 2009).
– Huge increase in signature size and time.
Compromise signature size/time with public key size (still slow).

Compute the group structure and stop whining
CSI-FiSh: Beullens, Kleinjung and Vercauteren 2019

Already suggested by Couveignes (1996) and Stolbunov (2006).
Computationally intensive (subexponential parameter generation).
Decent parameters, e.g.: 263 bytes, 390ms, @NIST-1.

– Technically not post-quantum (signing requires solving ApproxCVP).
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Rejection sampling

Sample long term secret~s in the usual box
[�B ;B ]n ,
Sample ephemeral ~r in a larger box
[�(� + 1)B ; (� + 1)B ]n ,
Throw away ~r � ~s if it is out of the box
[��B ; �B ]n .

Zero-knowledge
Theorem: ~r � ~s is uniformly distributed in
[��B ; �B ]n .

Problem: set � so that rejection probability is
low.

+(� + 1)B

�(� + 1)B

�

+B�B

=

+�B

��B
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SeaSign Performance (NIST-1)

t = 1 bit challenges t = 16 bits challenges PK compression
Sig size 20 KiB 978 B 3136 B
PK size 64 B 4 MiB 32 B
SK size 32 B 16 B 1 MiB
Est. keygen time 30ms 30mins 30mins
Est. sign time 30 hours 6 mins 6 mins
Est. verify time 10 hours 2 mins 2 mins
Asymptotic sig size O(�2 log(�)) O(�t log(�)) O(�2t)

Speed/size compromises by Decru, Panny and Vercauteren 2019
Sig size 36 KiB 2 KiB —
Est. sign time 30mins 80 s —
Est. verify time 20mins 20 s —
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CSI-FiSh5

Record breaking class group computation for CSIDH-512, hard to scale to larger primes;
E�ectively (but not asymptotically) makes CSIDH into an HHS:
I Compatible with secret sharing in the exponent, yields decent threshold signatures.4

S t k jskj jskj jsigj KeyGen Sign Verify
21 56 16 16 B 128 B 1880 B 100ms 2.92 s 2.92 s
22 38 14 16 B 256 B 1286 B 200ms 1.98 s 1.97 s
23 28 16 16 B 512 B 956 B 400ms 1.48 s 1.48 s
24 23 13 16 B 1 KB 791 B 810 ms 1.20 s 1.19 s
26 16 16 16 B 4 KB 560 B 3.3 s 862 ms 859ms
28 13 11 16 B 16 KB 461 B 13 s 671 ms 670ms

210 11 7 16 B 64 KB 395 B 52 s 569ms 567ms
212 9 11 16 B 256 KB 329 B 3.5 m 471 ms 469ms
215 7 16 16 B 2 MB 263 B 28m 395ms 393ms

4De Feo and Meyer 2019.
5Beullens, Kleinjung, and Vercauteren 2019.
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A�-protocol for SIDH

E E=hSi

E=hPi E=hP ;Si

�

?

? ?

1
3 -soundness

Secret � of degree `eA
A .

1 Choose a random pointP 2 E [`eB
B ], compute the diagram;

2 Publish the curvesE=hPi andE=hP ;Si;
3 The verifier challenges to reveal one out of the 3 sides

I Isogenies ; 0 (degree `eB
B ) unrelated to secret;

I Isogeny �0 conjectured to not reveal useful information on �.

Improving to 1
2 -soundness

Reveal ; 0 simultaneously;
Reveals action of � onE [`eB

B ] ) Stronger security assumption.
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SIDH signature performance (NIST-1)

According to Yoo, Azarderakhsh, Jalali, Jao and Vladimir Soukharev 2017:
Size: � 100KB ,
Time: seconds.

Galbraith, Petit and Silva 2017
Concept similar to CSI-FiSh: exploits known structure of endomorphism ring;
Statistical zero knowledge (under heuristic assumptions);
Based on the generic isogeny walk problem
(requires special starting curve, though);
Size/performance comparable to Yoo et al. (and possibly slower).
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Weil pairing and isogenies

Theorem
Let � : E ! E 0 be an isogeny and �̂ : E 0 ! E its dual.
Let eN be the Weil pairing ofE and e 0N that ofE 0. Then, for

eN (P ; �̂(Q)) = e 0N (�(P);Q);

for anyP 2 E [N ] andQ 2 E 0[N ].

Corollary

e 0N (�(P); �(Q)) = eN (P ;Q)deg �:
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Pairing proofs: what for?

Non-interactive, not post-quantum, not zero knowledge;

Useful for (partially) validating SIDH public keys;
Succinct: proof size, verification time independent of walk length!
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Distributed lottery

Participants A, B, . . . , Zwant to agree on a randomwinning ticket.

Flawed protocol
Each participant x broadcasts a random string sx ;
Winning ticket isH (sA; : : : ; sZ ).

Fixes
Make the hash function sloooooooooooooooooooooooooooow;

Make it possible to verifyw = H (sA; : : : ; sZ ) fast.
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Verifiable Delay Functions (Boneh, Bonneau, Bünz, Fisch 2018)

Wanted
Function (family) f : X ! Y s.t.:

Evaluating f (x ) takes long time:
I uniformly long time,
I on almost all random inputs x ,
I even a�er having seenmany values of f (x 0),
I even given massive number of processors;

Verifying y = f (x ) is e�icient:
I ideally, exponential separation between evaluation and verification.

Luca De Feo (IBM Research Zürich) Isogeny Based Cryptography https://defeo.lu/docet Simula UiB 69 / 80

https://defeo.lu/docet


Sequentiality

Ideal functionality:

y = f (x ) = H (H (� � � (H (x ))))| {z }
T times

Sequential assuming hash output “unpredictability”,
but how do you verify?
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Isogeny VDF (Fp-version)

(Trusted) Setup
Pairing friendly supersingular curveE=Fp
with unknown endomorphism ring
Isogeny � : E ! E 0 of degree 2T ,
PointP 2 E [(N ; � � 1)], image �(P).

Evaluation
Input: randomQ 2 E 0[(N ; � + 1)],

Output: �̂(Q).

Verification

eN (P ; �̂(Q))
?
= eN (�(P);Q):
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Conclusion

Repeat with me: I need isogeny-based crypto!
Di�erent isogeny graphs enable di�erent applications, di�erent security assumptions.
Public key encryption based on isogenies is a reality, althoughmaybe not your #1 choice for
TLS.
Post-quantum isogeny signatures are still far from practical.
Practical isogeny signatures do exists (CSI-FiSh); you can start using them now if you are an
isogeny hippie, are ok for threshold signatures, but they do not scale.
Pairing-based isogeny proofs are usable, but not interesting for signatures: look into
succinctness, instead!
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Thank you

https://defeo.lu/

@luca_defeo

https://defeo.lu/
https://twitter.com/luca_defeo
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