

Isogeny Based Cryptography the new frontier of number theoretic cryptography

Luca De Feo

IBM Research Zürich

February 17, 2021 Annual Iranian Mathematics Conference 2021

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve *defined over* k is the locus in the projective space $\mathbb{P}^2(\bar{k})$ of an equation

 $Y^2Z = X^3 + aXZ^2 + bZ^3,$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

- $\mathcal{O} = (0:1:0)$ is the point at infinity;
- $y^2 = x^3 + ax + b$ is the affine Weierstrass equation.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- \mathcal{O} is the group identity;
- Opposite points have the same *x*-value.

Why do cryptographers care? (Diffie–Hellman key exchange)

Goal: Alice and Bob have never met before. They are chatting over a public channel, and want to agree on a shared secret to start a private conversation.

Setup: They agree on a (large) cyclic group $G = \langle g \rangle$ of order N.

Brief history of DH key exchange

- 1976 Diffie & Hellman publish New directions in cryptography, suggest using $G = \mathbb{F}_{p}^{*}$.
- 1978 Pollard publishes his discrete logarithm algorithm ($O(\sqrt{\#G})$ complexity).
- 1980 Miller and Koblitz independently suggest using elliptic curves $G = E(\mathbb{F}_p)$.
- 1994 Shor publishes his quantum discrete logarithm / factoring algorithm.
- 2005 NSA standardizes elliptic curve key agreement (ECDH) and signatures ECDSA.
- 2017 $\,\sim\,70\%$ of web traffic is secured by ECDH and/or ECDSA.
- 2017 NIST launches post-quantum competition, says "not to bother moving to elliptic curves, if you haven't yet".
- 2020 NIST calls the finalists for the competition. Elliptic curves are still running, thanks to SIKE, the Supersingular Isogeny Key Encapsulation scheme.

Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent complex numbers. Set

 $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$

 \mathbb{C}/Λ is an elliptic curve.

Multiplication

Multiplication

Multiplication

Let $\mathbf{a} \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$

 ϕ is a morphism of complex Lie groups and is called an isogeny.

Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a \mathbb{Z} \oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi:\mathbb{C}/\Lambda_1 o\mathbb{C}/\Lambda_2$

 ϕ is a morphism of complex Lie groups and is called an isogeny.

Let $a \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

 $\Lambda_2 = a \mathbb{Z} \oplus \Lambda_1$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

 $\phi:\mathbb{C}/\Lambda_1 o\mathbb{C}/\Lambda_2$

 ϕ is a morphism of complex Lie groups and is called an isogeny.

Taking a point $\frac{b}{p}$ not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{oldsymbol{\phi}}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point b not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{oldsymbol{\phi}}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point b not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{oldsymbol{\phi}}:\mathbb{C}/\Lambda_2 o\mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map. $\hat{\phi}$ is called the dual isogeny of ϕ .

What is scalar multiplication?

$$[n] : P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- A map $E \to E$,
- a group morphism,
- with finite kernel

- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

What is \$callar /m/ultiplication an isogeny?

$$[n] : P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- A map $E \to E$,
- a group morphism,
- with finite kernel

- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

What is \$caller/m/ultiplication an isogeny?

$$\phi \hspace{.1cm} : \hspace{.1cm} P \mapsto \phi(P)$$

- A map $E \to E$,
- a group morphism,
- with finite kernel

- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

What is \$caller/m/ultiplication an isogeny?

$$\phi \hspace{.1cm} : \hspace{.1cm} P \mapsto \phi(P)$$

- A map $E \to \not\!\!\!\! E E'$,
- a group morphism,
- with finite kernel

- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

What is \$caller/m/whtiplication an isogeny?

$$\phi \hspace{.1cm} : \hspace{.1cm} P \mapsto \phi(P)$$

- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

What is \$caller /n////tiplication an isogeny?

$$\phi \hspace{.1cm} : \hspace{.1cm} P \mapsto \phi(P)$$

- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree # # H.

What is \$caller /n////tiplication an isogeny?

$$\phi \hspace{.1cm} : \hspace{.1cm} P \mapsto \phi(P)$$

- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree $H^2 \# H$.

(Separable) isogenies \Leftrightarrow finite subgroups:

$$0 \longrightarrow H \longrightarrow E \stackrel{\phi}{\longrightarrow} E' \to 0$$

The kernel H determines the image curve E' up to isomorphism

$$E/H \stackrel{ ext{def}}{=} E'.$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Luca De Feo (IBM Research Zürich)

Feb 17, 2021, AIMC 2021 11/27

$$j=1728$$

The beauty and the beast (credit: Lorenz Panny)

Components of particular isogeny graphs look like this:

Which of these is good for crypto?

The beauty and the beast (credit: Lorenz Panny)

At this time, there are two distinct families of systems:

Brief history of isogeny-based cryptography

- 1997 Couveignes introduces the Hard Homogeneous Spaces framework. His work stays unpublished for 10 years.
- 2006 Rostovtsev & Stolbunov independently rediscover Couveignes ideas, suggest isogeny-based Diffie–Hellman as a quantum-resistant primitive.
- 2006-2010 Other isogeny-based protocols by Teske and Charles, Goren & Lauter.
- 2011-2012 D., Jao & Plût introduce SIDH, an efficient post-quantum key exchange inspired by Couveignes, Rostovtsev, Stolbunov, Charles, Goren, Lauter.
 - 2017 SIDH is submitted to the NIST competition (with the name SIKE, only isogeny-based candidate).
 - 2018 Castryck, Lange, Martindale, Panny & Renes create an efficient variant of the Couveignes–Rostovtsev–Stolbunov protocol, named CSIDH.
 - 2019 Isogeny signature craze: SeaSign (D. & Galbraith; Decru, Panny & Vercauteren), CSI-FiSh (Beullens, Kleinjung & Vercauteren), VDF (D., Masson, Petit & Sanso).
 - 2020 Isogeny signatures get interesting: SQISign (D., Kohel, Leroux, Petit, Wesolowski). SIKE is an Alternate candidate finalist in NIST's 3rd round.

Modular functions

$$j(z) = \frac{1}{q} + 744 + 196884q + \cdots$$

of
$$\mathbb{Q}(\sqrt{-D})$$

Elliptic curves with

$$\operatorname{End}(E)\subset \mathbb{Q}(\sqrt{-D})$$

Modular functions

Modular functions

Complex multiplication dictionary

Quadratic imaginary fields	Elliptic curves
Integers of $\mathbb{Q}(\sqrt{-D})$	Endomorphisms of E
Integral ideals of $\mathbb{Q}(\sqrt{-D})$	Isogenies of <i>E</i>
Ideal classes in $\operatorname{Cl}(-D)$	Isogenies •
Ideal norm	Isogeny degree
Conjugate ideal	Dual isogeny

Group action

 $\mathcal{G} \circlearrowright \mathcal{E}$: A (finite) set \mathcal{E} acted upon by a group \mathcal{G} faithfully and transitively:

$$st: \mathcal{G} imes \mathcal{E} \longrightarrow \mathcal{E} \ \mathfrak{g} st E \longmapsto E'$$

Compatibility: $\mathfrak{g}' * (\mathfrak{g} * E) = (\mathfrak{g}'\mathfrak{g}) * E$ for all $\mathfrak{g}, \mathfrak{g}' \in \mathcal{G}$ and $E \in \mathcal{E}$; Identity: $\mathfrak{e} * E = E$ if and only if $\mathfrak{e} \in \mathcal{G}$ is the identity element; Transitivity: for all $E, E' \in \mathcal{E}$ there exist a unique $\mathfrak{g} \in \mathcal{G}$ such that $\mathfrak{g} * E' = E$.

Hard Homogeneous Space (HHS) — Couveignes 1996

 $\mathcal{G} \circlearrowright \mathcal{E}$ such that \mathcal{G} is commutative and:

- Evaluating $E' = \mathfrak{g} * E$ is easy;
- Inverting the action is hard.

HHS Diffie-Hellman

Goal: Alice and Bob have never met before. They are chatting over a public channel, and want to agree on a shared secret to start a private conversation.

Setup: They agree on a (large) HHS $\mathcal{G} \circlearrowright \mathcal{E}$ of order N.

HHSDH from complex multiplication

Obstacles:

- The group size of Cl(-D) is unknown.
- Only ideals of small norm (isogenies of small degree) are efficient to evaluate.

Solution:

• Restrict to elements of Cl(-D) of the form

$$\mathfrak{g}=\prod\mathfrak{a}_i^{e_i}$$

for a basis of a_i of small norm.

• Equivalent to doing isogeny walks of smooth degree.

Couveignes/Rostovtsev-Stolbunov/CSIDH key exchange

• E_0

- A starting curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.

.

Couveignes/Rostovtsev–Stolbunov/CSIDH key exchange

- A starting curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A : E_0 \to E_A$ of length $O(\log p)$;

Couveignes/Rostovtsev–Stolbunov/CSIDH key exchange

- A starting curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A : E_0 \to E_A$ of length $O(\log p)$;
- Bob does the same;

Couveignes/Rostovtsev-Stolbunov/CSIDH key exchange

- A starting curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A : E_0 \to E_A$ of length $O(\log p)$;
- Output to the same;
- They publish E_A and E_B ;

Couveignes/Rostovtsev–Stolbunov/CSIDH key exchange

- A starting curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A : E_0 \to E_A$ of length $O(\log p)$;
- **Bob** does the same;
- They publish E_A and E_B ;
- Alice repeats her secret walk ϕ_A starting from E_B .

Couveignes/Rostovtsev–Stolbunov/CSIDH key exchange

- A starting curve E_0/\mathbb{F}_p ;
- A set of small prime degree isogenies.
- Alice takes a secret random walk $\phi_A : E_0 \to E_A$ of length $O(\log p)$;
- **Bob** does the same;
- They publish E_A and E_B ;
- Alice repeats her secret walk ϕ_A starting from E_B .
- **Solution Bob** repeats his secret walk ϕ_B starting from E_A .

Quantum security

Fact: Shor's algorithm does not apply to Diffie-Hellman protocols from group actions.

Subexponential attack

 $\exp(\sqrt{\log p \log \log p})$

- Reduction to the hidden shift problem by evaluating the class group action in quantum supersposition (subexpoential cost);
- Well known reduction from the hidden shift to the dihedral (non-abelian) hidden subgroup problem;
- Kuperberg's algorithm solves the dHSP with a subexponential number of class group evaluations.
- Recent work suggests that 2^{64} -qbit security is achieved somewhere in $512 < \log p < 2048$.

Supersingular curves

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p. End(E) is isomorphic to one of the following:

- \mathbb{Z} , only if p = 0
- An order \mathcal{O} in a quadratic imaginary field:

E is ordinary with complex multiplication by \mathcal{O} .

• Only if p > 0, a maximal order in a quaternion algebra^{*a*}:

E is supersingular.

E is ordinary.

^{*a*}(ramified at p and ∞)

Key exchange with supersingular curves (Jao & D. 2011)

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Key exchange with supersingular curves (Jao & D. 2011)

- Fix small primes ℓ_A , ℓ_B ;
- No canonical labeling of the ℓ_A and ℓ_B -isogeny graphs; however...

Rostovstev & Stolbunov (> 5 min)

Couveignes' key exchange

Contemporary research

- Efficient signature schemes and proofs of knowledge;
- Quaternionic multiplication \rightarrow SQISign;
- Higher dimensional abelian varieties;
- Cryptanalysis;
- Side-channel protections;
- Lower complexity bounds and delay protocols;
- Trusted generation of random supersingular curves;
- Prime searches;
- ...

Thank you

https://defeo.lu/

🄰 @luca_defeo