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From crypto to computer algebra
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pk-torsion points of elliptic curves

E : y2 = x3 + ax+ b a, b ∈ Fq

pk-torsion points are not necessarily defined in the
base field. We want to:

compute primtive pk-torsion points,

apply Galois actions on them,

evaluate maps between elliptic curves,

. . .

Applications

Isogeny computation [Couveignes ’96].

p-torsion points of generic abelian varieties;
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Artin-Schreier

Definition (Artin-Schreier polynomial)

K a field of characteristic p, α ∈ K

Xp −X − α

is an Artin-Schreier polynomial.

Theorem

K finite. Xp −X − α irreducible ⇔ TrK/Fp
(α) 6= 0.

If η ∈ K is a root, then η + 1, . . . , η + (p− 1) are roots.

Definition (Artin-Schreier extension)

P an irreducible Artin-Schreier polynomial.

L = K[X]/P(X).

L/K is called an Artin-Schreier extension.
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Our context

Uk = Uk−1[Xk]
Pk−1(Xk)
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U1 = U0[X1]
P0(X1)

p

U0 = Fpd =
Fp[X0]
Q(X0)

Towers over finite fields

Pi = Xp −X − αi

We say that (U0, . . . ,Uk) is defined by
(α0, . . . , αk−1) over U0.

ANY separable extension of degree p can be
expressed this way
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Size, complexities
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#Ui = ppid

Optimal representation

All common representations achieve it: O(pid)

Complexities

optimal: O(pid) addition

quasi-optimal: Õ(iapid) FFT multiplication

almost-optimal: Õ(iapi+bd)
suboptimal: Õ(iapi+bdc)
too bad: Õ

(
ia(pi+b)edc

)
naive multiplication

Multiplication function M(n)

FFT: M(n) = O(n log n log log n), Naive: M(n) = O(n2).
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Outline

1 Representation

2 Arithmetics

3 Implementation and benchmarks
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Representation matters!
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Multivariate representation of v ∈ Ui

v = Xd−1
0 Xp−1

1 · · ·Xp−1
i + 2Xd−1

0 Xp−1
1 · · ·Xp−2

i + · · ·

Univariate representation of v ∈ Ui

Ui = Fp[xi],

v = c0 + c1xi + c2x
2
i + · · · + cpid−1x

pid−1
i with ci ∈ Fp.

How much does it cost to...
Multiply?

Express the embedding Ui−1 ⊂ Ui ?

Express the vector space isomorphism Ui = Up
i−1 ?

Switch between the representations?
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A primitive tower
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Definition (Primitive tower)

A tower is primitive if Ui = Fp[Xi].

In general this is not the case. Think of P0 = Xp −X − 1.

Theorem (extends a result in [Cantor ’89])

Let x0 = X0 such that TrU0/Fp
(x0) 6= 0 , let

P0 = Xp −X − x0

Pi = Xp −X − x2p−1
i

with xi+1 a root of Pi in Ui+1.
Then, the tower defined by (P0, . . . , Pk−1) is primitive.

Some tricks to play when p = 2.
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Computing the minimal polynomials
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We look for Qi, the minimal polynomial of xi over Fp

Algorithm [Cantor ’89]

Q0 = Q easy,

Q1 = Q0(Xp −X) easy,

Let ω be a 2p− 1-th root of unity,

qi+1(X2p−1) =
∏2p−2

j=0 Qi(ωjX) not too hard,

Qi+1 = qi+1(Xp −X) easy.

Complexity

O
(
M(pi+2d) log p

)
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Outline

1 Representation
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3 Implementation and benchmarks
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Level embedding
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Push-down
Input v a Ui,
Output v0, . . . , vp−1 a Ui−1 such that v = v0 + · · ·+ vp−1x

p−1
i .

Lift-up

Input v0, . . . , vp−1 a Ui−1,

Output v a Ui such that v = v0 + · · ·+ vp−1x
p−1
i .

Complexity function L(i)

It turns out that the two operations lie in the same complexity class,
we note L(i) for it:

L(i) = O
(
pM(pid) + pi+1d logp(pid)2

)
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Level embedding

Change of order

{
Xp

i −Xi −X2p−1
i−1 = 0

Qi−1(Xi−1) = 0 ↔

{
Qi(Xi) = 0
Xi−1 = R(Xi)/S(Xi)

Rational Univariate Representation ([Rouillier ’99])

Push-down: left-to-right,

Lift-up: right-to-left,

going right-to-left = looking for RUR,

equivalently, changing order from Xi−1 > Xi to Xi > Xi−1.

Many optimisations for our case.
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Push-down

Push-down

Input v a Ui,
Output v0, . . . , vp−1 a Ui−1 s.t. v = v0 + · · ·+ vp−1x

p−1
i .

1 Reduce v modulo xp
i − xi − x2p−1

i−1 by a
divide-and-conquer approach,

2 each of the coefficients of xi has degree in xi−1 less
than 2 degxi

(v),
3 reduce each of the coefficients.
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Lift-up

Power projection

Let x be fixed. An algorithm that takes a linear form ` as input and outputs

`(1) , `(x) , . . . , `(xn)

is said to solve power projection problem ([Shoup ’99]).

Trace formulas [Pascal and Schost ’06, Rouillier ’99]

Given v0, . . . , vp−1 a Ui−1,

v = v0 + · · ·+ vp−1x
p−1
i can be recovered using suitable trace formulas.

Solving them is the power projection problem on input v · Tr : x 7→ Tr(vx).

Transposed algorithms (see [Bürgisser, Clausen and Shokrollahi ’97])

Linear algorithms can be transposed much like linear applications;

Computing v · Tr is transposed multiplication.

Computing the power projection for xi is transposed push-down.
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Lift-up

Lift-up

Input v0, . . . , vp−1 a Ui−1

Output v a Ui s.t. v = v0 + · · ·+ vp−1x
p−1
i

1 Compute the linear form Tr ∈ UD∗
i ,

2 compute ` = (v0 + · · ·+ vp−1x
p−1
i ) · Tr,

3 compute Pv = Push-downT (`),

4 compute Nv(Z) = Pv(Z) · rev(Qi)(Z) mod Zpid−1,
5 return rev(Nv)/Q

′
i mod Qi.
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Speeding up some arithmetics
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Divide and conquer

We improve some operations in Ui

push-down the operands;

recursively solve p instances
in Ui−1;

combine the results;

lift-up.

op(v)

op(v0), . . . , op(vp−1)

w0, . . . , wp−1

w

Where it works

traces,

p-th roots,

pseudotraces,

inversion,

iterated frobenius,

. . .
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Important application : Isomorphisms with generic towers
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Generic towers

Let (α0, . . . , αk−1) define a generic tower over U0,

if we find an isomorphism we can bring fast arithmetics to it.

Computing the isomorphism [Couveignes ’00]

Goal: factor Xp −X − αi in Ui+1.

Change of variables X ′ = X − µ s.t.

X ′p −X ′ − αi has a root in Ui,

Push-down, solve recursively, result is ∆,

Lift-up ∆,

return ∆ + µ.

U′k

U′k−1

�

�

�

�

�

�

U′1

U0
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Implementation

Implementation in NTL + gf2x

Three types

GF2: p = 2, FFT, bit optimisation,

zz_p: p < 2|long|, FFT, no bit-tricks,

ZZ_p: generic p, like zz_p but slower.

Comparison to Magma

Three ways of handling field extensions

1 quo<U|P>: quotient of multivariate polynomial ring + Gröbner bases

2 ext<k|P>: field extension by Xp−X −α, precomputed bases + multivariate

3 ext<k|p>: field extension of degree p, precomputed bases + multivariate

Benchmarks (on 14 AMD Opteron 2500)

Three modes

p = 2, d = 1, height varying,

p varying, d = 1, height = 2,

p = 5, d varying, height = 2.

L. De Feo and É. Schost () Fast arithmetics in Artin-Schreier towers ISSAC, July 31, 2009 19 / 24



Construction of the tower + precomputations
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Multiplication
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Isomorphism ([Couveignes ’00] vs Magma)
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Benchmarks on isogenies ([Couveignes ’96])

Over F2101 , on an Intel Xeon E5430 Quad Core Processor 2.66GHz, 64GB ram

0.03125

1

32

1024

32768

1.0486e+06

 2  4  8  16  32  64  128  256  512

se
co

n
d
s

isogeny degree

zzp
GF2

magma(2)
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FAAST

These algorithms are packaged in a library

Download FAAST at
http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST

We are currently writing an spkg for Sage.
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