Fast arithmetics in Artin-Schreier towers over finite fields

L. De Feo¹ and É. Schost²

¹École Polytechnique and INRIA, France ²ORCCA and CSD, The University of Western Ontario, London, ON

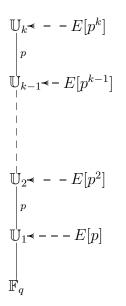
> July 31, 2009 ISSAC, Seoul, Korea

L. De Feo and É. Schost ()

Fast arithmetics in Artin-Schreier towers

ISSAC. July 31, 2009 1 / 24

From crypto to computer algebra



p^k -torsion points of elliptic curves

$$E: y^2 = x^3 + ax + b \quad a, b \in \mathbb{F}_q$$

 $p^k\mbox{-torsion}$ points are not necessarily defined in the base field. We want to:

- $\bullet\,$ compute primtive $p^k\text{-torsion}$ points,
- apply Galois actions on them,
- evaluate maps between elliptic curves,

Applications

Ο...

- Isogeny computation [Couveignes '96].
- p-torsion points of generic abelian varieties;

イロト イヨト イヨト イヨト

Artin-Schreier

Definition (Artin-Schreier polynomial)

 \mathbbm{K} a field of characteristic $p\text{, }\alpha\in\mathbbm{K}$

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

Theorem

If finite. $X^p - X - \alpha$ irreducible $\Leftrightarrow \operatorname{Tr}_{\mathbb{K}/\mathbb{F}_p}(\alpha) \neq 0$. If $\eta \in \mathbb{K}$ is a root, then $\eta + 1, \dots, \eta + (p-1)$ are roots.

Definition (Artin-Schreier extension)

 \mathcal{P} an irreducible Artin-Schreier polynomial.

$$\mathbb{L} = \mathbb{K}[X] / \mathcal{P}(X).$$

 \mathbb{L}/\mathbb{K} is called an Artin-Schreier extension.

 $\mathbb{U}_k = \frac{\mathbb{U}_{k-1}[X_k]}{P_{k-1}(X_k)}$ p \mathbb{U}_{k-1} $\mathbb{U}_1 = \frac{\mathbb{U}_0[X_1]}{P_0(X_1)}$ p $\mathbb{U}_0 = \mathbb{F}_{p^d} = \frac{\mathbb{F}_p[X_0]}{O(X_0)}$

Towers over finite fields

$$P_i = X^p - X - \alpha_i$$

We say that $(\mathbb{U}_0, \ldots, \mathbb{U}_k)$ is defined by $(\alpha_0, \ldots, \alpha_{k-1})$ over \mathbb{U}_0 .

ANY separable extension of degree p can be expressed this way

イロト イヨト イヨト イヨト

Size, complexities

$$\#\mathbb{U}_i = p^{p^i d}$$

\mathbb{U}_k	Optimal repr	esentation	
	All	common representations a	achieve it: $O(p^id)$
$\mathbb{U}_{k-1}^{ extsf{}}$	Complexities		
	optimal: quasi-optimal almost-optima suboptimal:	$: \tilde{O}(i^a p^i d)$	addition FFT multiplication
\mathbb{U}_1	too bad:	~ - /	naive multiplication
	Multiplicatio	n function $M(n)$	
\mathbb{U}_0		$= O(n \log n \log \log n),$	Naive: $M(n) = O(n^2)$.
			 (四) (월) (불) (불) (불) ()
L. De Feo a	ind É. Schost ()	Fast arithmetics in Artin-Schreier towers	ISSAC, July 31, 2009 5 / 24

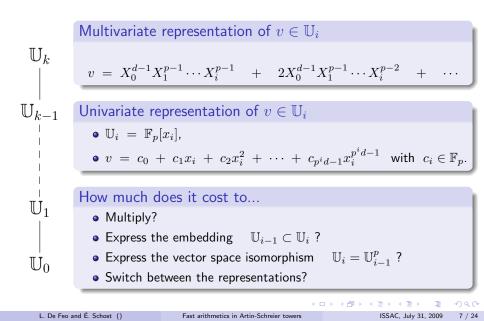
Outline

Implementation and benchmarks

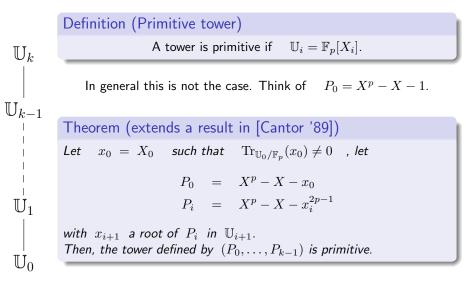
2

・ロト ・回ト ・ヨト ・ヨト

Representation matters!



A primitive tower



Some tricks to play when p = 2.

(a)

Computing the minimal polynomials

We look for Q_i , the minimal polynomial of x_i over \mathbb{F}_p \mathbb{U}_k Algorithm [Cantor '89] \mathbb{U}_{k-1} • $Q_0 = Q$ easy, • $Q_1 = Q_0(X^p - X)$ easy, Let ω be a 2p-1-th root of unity, • $q_{i+1}(X^{2p-1}) = \prod_{i=0}^{2p-2} Q_i(\omega^j X)$ not too hard. • $Q_{i+1} = q_{i+1}(X^p - X)$ easy. \mathbb{U}_1 Complexity

$$O\left(\mathsf{M}(p^{i+2}d)\log p\right)$$

 \mathbb{U}_0

<ロ> (日) (日) (日) (日) (日)

Outline

Implementation and benchmarks

2

イロト イヨト イヨト イヨト

Level embedding

 \mathbb{U}_k \mathbb{U}_{k-1} \mathbb{U}_1 \mathbb{U}_0

Push-down

Input $v \dashv \mathbb{U}_i$, Output $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ such that $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$.

Lift-up

 $\begin{array}{lll} \text{Input} \quad v_0,\ldots,v_{p-1}\dashv \mathbb{U}_{i-1},\\ \text{Output} \ v\dashv \mathbb{U}_i \quad \text{such that} \quad v=v_0+\cdots+v_{p-1}x_i^{p-1}. \end{array}$

Complexity function L(i)

It turns out that the two operations lie in the same complexity class, we note $\,{\rm L}(i)\,$ for it:

$$\mathsf{L}(i) = O\left(p\mathsf{M}(p^{i}d) + p^{i+1}d\log_{p}(p^{i}d)^{2}\right)$$

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Level embedding

Change of order

$$\begin{cases} X_i^p - X_i - X_{i-1}^{2p-1} = 0\\ Q_{i-1}(X_{i-1}) = 0 \end{cases} \longleftrightarrow \begin{cases} Q_i(X_i) = 0\\ X_{i-1} = R(X_i)/S(X_i) \end{cases}$$

Rational Univariate Representation ([Rouillier '99])

- Push-down: left-to-right,
- Lift-up: right-to-left,
- going right-to-left = looking for RUR,
- equivalently, changing order from $X_{i-1} > X_i$ to $X_i > X_{i-1}$.
- Many optimisations for our case.

イロト イ団ト イヨト イヨト

Push-down

Input $v \dashv \mathbb{U}_i$, Output $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ s.t. $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$.

- Reduce v modulo $x_i^p x_i x_{i-1}^{2p-1}$ by a divide-and-conquer approach,
- **②** each of the coefficients of x_i has degree in x_{i-1} less than $2 \deg_{x_i}(v)$,
- In reduce each of the coefficients.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのの

Lift-up

Power projection

Let x be fixed. An algorithm that takes a linear form ℓ as input and outputs

$$\ell(1)$$
, $\ell(x)$, ..., $\ell(x^n)$

is said to solve power projection problem ([Shoup '99]).

Trace formulas [Pascal and Schost '06, Rouillier '99]

• Given
$$v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$$
,

• $v = v_0 + \dots + v_{p-1} x_i^{p-1}$ can be recovered using suitable trace formulas.

• Solving them is the power projection problem on input $v \cdot \text{Tr} : x \mapsto \text{Tr}(vx)$.

Transposed algorithms (see [Bürgisser, Clausen and Shokrollahi '97])

- Linear algorithms can be transposed much like linear applications;
- Computing $v \cdot Tr$ is transposed multiplication.
- Computing the power projection for x_i is transposed push-down.

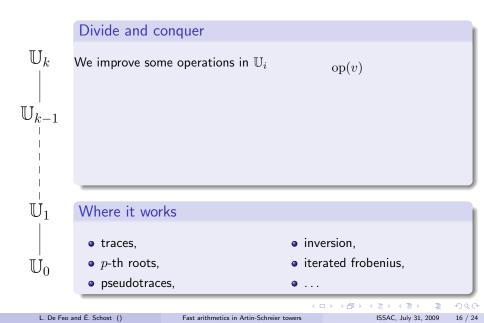
Lift-up

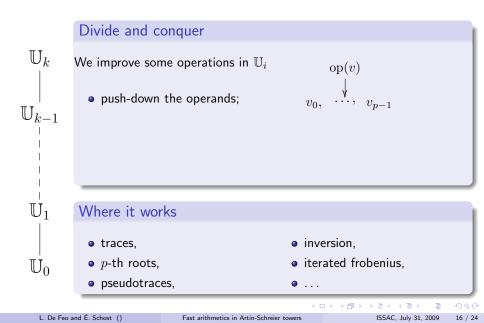
Input
$$v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$$

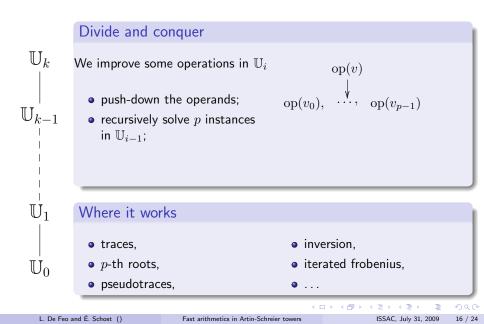
Output $v \dashv \mathbb{U}_i$ s.t. $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$
Output $v \dashv \mathbb{U}_i$ s.t. $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$
Compute the linear form $\operatorname{Tr} \in \mathbb{U}_i^{D^*}$,
compute $\ell = (v_0 + \cdots + v_{p-1} x_i^{p-1}) \cdot \operatorname{Tr}$,
compute $P_v = \operatorname{Push-down}^T(\ell)$,
compute $N_v(Z) = P_v(Z) \cdot \operatorname{rev}(Q_i)(Z) \mod Z^{p^i d-1}$,
return $\operatorname{rev}(N_v)/Q'_i \mod Q_i$.

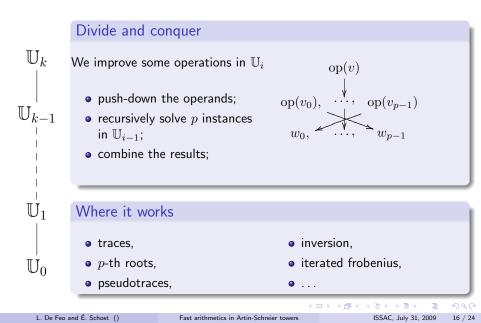
2

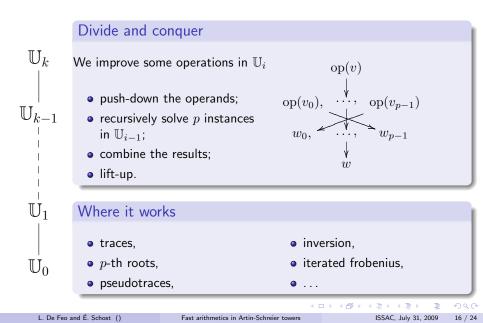
イロト イヨト イヨト イヨト



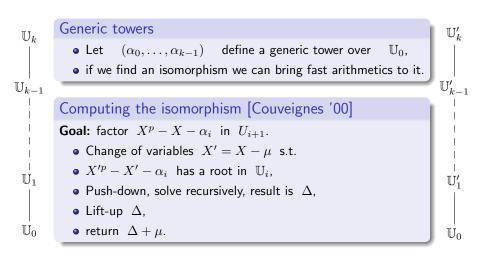








Important application : Isomorphisms with generic towers



(日) (同) (三) (三)

Outline

Implementation and benchmarks

2

イロン イロン イヨン イヨン

Implementation

Implementation in NTL + gf2x

• GF2: p = 2, FFT, bit optimisation,

Three types

- zz_p: $p < 2^{|long|}$, FFT, no bit-tricks,
- ZZ_p: generic p, like zz_p but slower.

Comparison to Magma

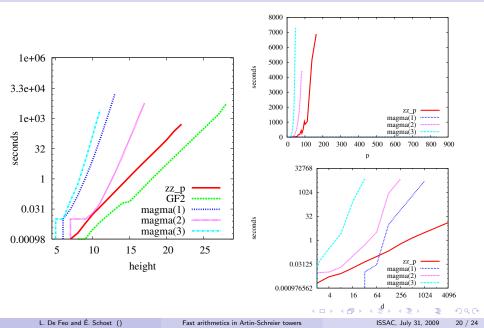
Three ways of handling field extensions

- **Q** quo<**U**|**P**>: quotient of multivariate polynomial ring + Gröbner bases
- **2** ext<k|P>: field extension by $X^p X \alpha$, precomputed bases + multivariate
- **(3)** ext<k|p>: field extension of degree p, precomputed bases + multivariate

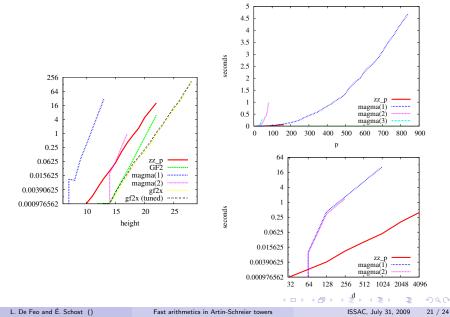
Benchmarks (on 14 AMD Opteron 2500)• p = 2, d = 1, height varying,Three modes• p varying, d = 1, height = 2,• p = 5, d varying, height = 2.

L. De Feo and É. Schost ()

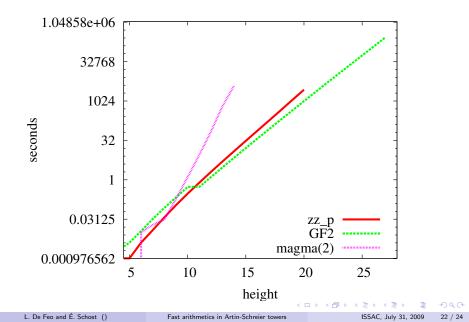
Construction of the tower + precomputations



Multiplication

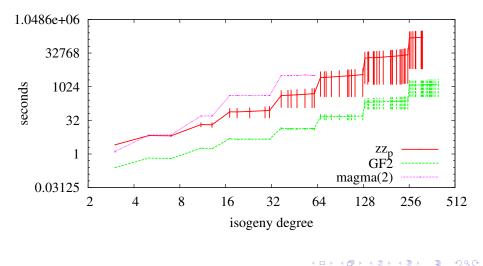


Isomorphism ([Couveignes '00] vs Magma)



Benchmarks on isogenies ([Couveignes '96])

Over $\mathbb{F}_{2^{101}}$, on an Intel Xeon E5430 Quad Core Processor 2.66GHz, 64GB ram



These algorithms are packaged in a library Download FAAST at http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST

We are currently writing an spkg for Sage.

• • • • • • • • • • • • •