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École Normale Supérieure & École Polytechnique
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The Discrete Logarithm Problem

Cyclic groups

A cyclic group (G, ∗), a generator g of G of
order n

G is isomorphic to Z/nZ via the bijection

expg : x 7→ gx

The function expg is easy to compute
(O(log n))

The discrete logarithm

The inverse to the function expg is called
discrete logarithm, noted logg :

logg : gx 7→ x
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The Discrete Logarithm Problem (DLP)

Computing the function logg may be very easy... e.g.: G = Z/nZ

...or very hard e.g.: G = Z/nZ∗

an example : G = Z/23Z∗, g = 5. What’s log5 10 ?

answer : 3, in fact 53 = 125 = 5 ∗ 23 + 10 !

Algorithms

The most efficient algorithms for a general group G are BSGS and
Pollard’s Rho. They both need O(

√
n) operations in the group

Pohlig and Hellman improve this result by solving the DLP in the
subgroups of G having prime order p s.t. p|n
Thus we demand the order of G to be prime

The most efficient algorithm for the group Z/nZ∗ is the Number
Field Sieve. It needs Ln(1/3) operations in the group
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Diffie-Hellman key exchange

A group G of prime order p. A generator g of G.

chooses a ∈ Z/pZ at random

computes ga

chooses b ∈ Z/pZ at random

computes gb

ga

−−−−−−−−−−−−−−−→
gb

←−−−−−−−−−−−−−−−

computes Kab =
(
gb

)a
computes Kab =

(
ga

)b
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The Diffie-Helman Problems

The security of the DH key exchange

An eavesdropper sees the values ga and gb

It has to compute the value Kab = gab

The hardness of the computation is expressed via two problems
believed to be difficult
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The Diffie-Helman Problems

Decisional Diffie-Hellman Problem (DDH)

Given a group G, a generator g for G, three random elements ga, gb and
gc, distinguish with a non-negligible probability the triples

(ga, gb, gab) and (ga, gb, gc) .

Computational Diffie-Hellman Problem (CDH)

Given a group G, a generator g for G, two random elements ga and gb,
compute gab.

DLP and DH

Clearly, if one can solve DLP, it can solve CDH and DDH as well

The other direction is believed to be “almost true”
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Elliptic curves

“An algebraic curve of genus 1”

Luca De Feo Elliptic Curve Cryptography



Cryptography based on groups
Elliptic curves

Elliptic curve cryptography
New perspectives in ECC

The arithmetic of elliptic curves
Elliptic Curve Discrete Logarithm Problem

Elliptic curves

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

X and Y taking values in a field K, a1, a2, a3, a4, a6 ∈ K
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The arithmetic of elliptic curves
Elliptic Curve Discrete Logarithm Problem

Elliptic curves

E : Y 2 = X3 + a4X + a6

assuming char(K) 6= 2, 3

Luca De Feo Elliptic Curve Cryptography



Cryptography based on groups
Elliptic curves

Elliptic curve cryptography
New perspectives in ECC

The arithmetic of elliptic curves
Elliptic Curve Discrete Logarithm Problem

Elliptic curves

E : Y 2 = X3 + a4X + a6

We define

The discriminant ∆ = −64a3
4 − 1728a2

6

The j-invariant j(E) = −−1728(4a4)
3

∆

Isomorphic curves have
the same j-invariant

We demand

The curve to be smooth

⇔ ∆ 6= 0
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The group law (the jacobian in one slide !)

Divisors

We can define a formal group Div(E) over the points of the curve E

We work in the projective space P2(K) : we add a point at infinity
O.

The point at infinity acts as a zero for the group

The jacobian

With “some algebra”, we define the group Jac(E) as a quotient of
Div(E)

Elements of Jac(E) are in one-to-one correspondence with the
points of the curve, we note E(K) the set of (rational) points of E.

It turns out that the operation of the jacobian has a simple
geometric interpretation...
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The arithmetic of elliptic curves
Elliptic Curve Discrete Logarithm Problem

Adding

P = (x0, y0), Q = (x1, y1)

−P = (x0,−y0)

we assume P 6= ±Q

we set λ = y1−y0

x1−x0

x2 = λ2 − x0 − x1

y2 = (x0 − x2)λ− y0

P + Q = (x2, y2)
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Elliptic Curve Discrete Logarithm Problem

Doubling

P = (x0, y0)

we assume y0 6= 0 (otherwise
[2]P = O)

we set λ =
3x2

0+a4

2y0

x2 = λ2 − x0 − x1

y2 = (x0 − x2)λ− y0

[2]P = (x2, y2)

generalizing, we note
[m]P = P + P + . . . + P︸ ︷︷ ︸

m times
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The arithmetic of elliptic curves
Elliptic Curve Discrete Logarithm Problem

Elliptic curves over finite fields

Elliptic Curve DLP

We have a group...

we want a hard DLP !

Infinite groups are not suitable for cryptography since the logarithm
is closely related with the size of the elements

Curves over finite fields are the good choice

Theorem (Hasse’s theorem)

Let E be an elliptic curve defined over a field Fq, then we have

|#E(Fq)− q − 1| ≤ 2
√

q.

Remarks

There exist effective algorithms to calculate #E(Fq), see [BSS 1]
and [BSS 2] for further readings.
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A cyclic group (G, ∗), a generator g of G of order n

G is isomorphic to Z/nZ via the bijection

logg : gx 7→ x
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ECDLP

A cyclic subgroup Jac(E), a generator P of Jac(E) of order n

Jac(E) is isomorphic to Z/nZ via the bijection

logg : [x]P 7→ x

Hardness of ECDLP

ECDLP is easy for various classes of elliptic curves :

n is not prime → Pohlig-Hellman

n < 2160 → BSGS or Pollard’s Rho

n = char(K) → anomalous attack (see [BSS 1])

(#K)t = 1 mod n for a t < 20 → MOV attack (see [BSS 1])

#K = pl with l not prime → Weil descent (see [BSS 2])
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ECDLP

A cyclic subgroup Jac(E), a generator P of Jac(E) of order n

Jac(E) is isomorphic to Z/nZ via the bijection

logg : [x]P 7→ x

Hardness of ECDLP

But for all the other cases no better algorithm is known than BSGS
or Pollard’s Rho !

Thus, for crytpographic use, we select a random curve and verify
that it’s ECDLP is not easy

Luca De Feo Elliptic Curve Cryptography



Cryptography based on groups
Elliptic curves

Elliptic curve cryptography
New perspectives in ECC

The arithmetic of elliptic curves
Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

ECDLP

A cyclic subgroup Jac(E), a generator P of Jac(E) of order n

Jac(E) is isomorphic to Z/nZ via the bijection

logg : [x]P 7→ x

Hardness of ECDLP

But for all the other cases no better algorithm is known than BSGS
or Pollard’s Rho !

Thus, for crytpographic use, we select a random curve and verify
that it’s ECDLP is not easy

Luca De Feo Elliptic Curve Cryptography



Cryptography based on groups
Elliptic curves

Elliptic curve cryptography
New perspectives in ECC

ECDH
ECDSA
Summary

Plan

1 Cryptography based on groups
Discrete Logarithm Problem
The Diffie-Hellman Problems

2 Elliptic curves
The arithmetic of elliptic curves
Elliptic Curve Discrete Logarithm Problem

3 Elliptic curve cryptography
ECDH
ECDSA
Summary

4 New perspectives in ECC
Pairings
Tripartite Diffie-Hellman
Identity Based Encryption

Luca De Feo Elliptic Curve Cryptography



Cryptography based on groups
Elliptic curves

Elliptic curve cryptography
New perspectives in ECC

ECDH
ECDSA
Summary

Elliptic Curve Diffie-Hellman (ECDH)

A group G of prime order p. A generator g of G.

chooses a ∈ Z/pZ at random

computes ga

chooses b ∈ Z/pZ at random

computes gb

ga

−−−−−−−−−−−−−−−→
gb

←−−−−−−−−−−−−−−−

computes Kab =
(
gb

)a
computes Kab =

(
ga

)b
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ECDH Problems

ECCDH and ECDDH

We define the problems computational ECDH and decisional ECDH the
same way we did for CDH and DDH
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Elliptic Curve Digital Signature Algorithm (ECDSA)

Parameters

A t-uple (E,K, n, P )

A hash function H : {0, 1}∗ → {0, 1}l

A private key x ∈ Z/pZ and a public key Y = [x]P

Signing a message m

1 Choose k ∈ Z/pZ at random

2 T ← [k]P

3 r ← x(T ) mod p

4 e← H(m)

5 s← e+xr
k mod p

6 Return (r, s)

Verifying a signature (r, s)

1 e← H(m)

2 u← e
s

3 v ← r
s

4 T ← [u]P + [v]Y

5 Accept if and only if r = x(T )
mod p
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Summary

Other protocols

ECMQV authentified key agreement

ECIES integrated encryption system

Security parameters

DLP over finite fields requires nowadays 1024 bit keys to achieve a
good security level (80 bits)

For a comparable security level, ECDLP requires lesss than 200 bit
keys

The gain is given by the equation

n ≈ N1/3

where n is the number of bits required for an EC cryptosystem and
N is the number of bits required for a conventional one
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Pairings

Definition (Pairing)

Given two groups (G1,+1) and (G2,+2) with same exponent n, given a
cyclic group (G3, ∗) of order n, a pairing is a function

e : G1 ×G2 → G3

satisfying the following properties :

Bilinearity :

e(P + P ′, Q) = e(P,Q)e(P ′, Q)
e(P,Q + Q′) = e(P,Q)e(P,Q′)

Non-degeneracy :

for all P there is a Q such that e(P,Q) 6= 1
for all Q there is a P such that e(P,Q) 6= 1
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Pairings

Definition (Self-pairing)

With the same notation as above, taking G1 = G2, we define a
self-pairing as function

e : G1 ×G1 → G3

satisfying the following properties :

Bilinearity :

e(P + P ′, Q) = e(P,Q)e(P ′, Q)
e(P,Q + Q′) = e(P,Q)e(P,Q′)

Symmetry : e(P,Q) = e(Q,P ) for all P and Q

Non-degeneracy : e(P, P ) 6= 1 for all P
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Pairings

Pairings over elliptic curves

Suppose G1 and G2 are groups of points of elliptic curves

Then pairings exist with G3 a multiplicative subgroup of a finite field

If G1 is a subgroup of Jac(E) for a E(Fq), then there exist a k ∈ N
(called the embedding degree) and a self-pairing s.t. G3 is a
multilpicative subgroup of Fqk

There exist classes of curves for which there is a pairing effectively
computable, ECCDH is hard for the curve and DDH is hard for the
finite field
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Tripartite Diffie-Hellman (3DH)

G1 sugroup of E(Fq), G3 subgroup of Fqk , a self-pairing e, a generator
P of G1

select a random a

broadcast [a]P

Kabc = e([b]P, [c]P )a

select a random b

broadcast [b]P

Kabc = e([a]P, [c]P )b

select a random c

broadcast [b]P

Kabc = e([a]P, [b]P )c

Kabc = e(P, P )abc
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