Elliptic Curve Cryptography

Luca De Feo

École Normale Supérieure & École Polytechnique

Università di Pisa, April 18, 2007

http://www.eleves.ens.fr/home/defeo

Discrete Logarithm Problem The Diffie-Hellman Problems

Plan

- Cryptography based on groups
 - Discrete Logarithm Problem
 - The Diffie-Hellman Problems
 - 2 Elliptic curves
 - The arithmetic of elliptic curves
 - Elliptic Curve Discrete Logarithm Problem
- 3 Elliptic curve cryptography
 - ECDH
 - ECDSA
 - Summary
- 4 New perspectives in ECC
 - Pairings
 - Tripartite Diffie-Hellman
 - Identity Based Encryption

(日本)

Discrete Logarithm Problem The Diffie-Hellman Problems

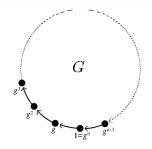
The Discrete Logarithm Problem

Cyclic groups

- A cyclic group (G, *), a generator g of G of order n
- G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

$$\exp_g : x \mapsto g^x$$

 The function exp_g is easy to compute (O(log n))



(4月) (日) (日) (日) (1000)

Discrete Logarithm Problem The Diffie-Hellman Problems

The Discrete Logarithm Problem

Cyclic groups

- A cyclic group (G, *), a generator g of G of order n
- G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

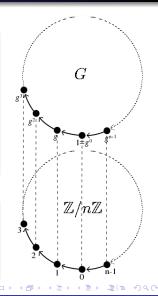
$$\exp_g : x \mapsto g^x$$

 The function exp_g is easy to compute (O(log n))

The discrete logarithm

• The inverse to the function exp_g is called discrete logarithm, noted log_g :

$$\log_g \,:\, g^x \mapsto x$$



Cryptography based on groups Elliptic curves New perspectives in ECC

Discrete Logarithm Problem The Diffie-Hellman Problems

The Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP)

• Computing the function \log_a may be very easy... e.g.: $G = \mathbb{Z}/n\mathbb{Z}$

(4月) (日) (日) (日) (1000)

Discrete Logarithm Problem The Diffie-Hellman Problems

The Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP)

- Computing the function log_a may be very easy...
- ...or very hard

e.g.: $G = \mathbb{Z}/n\mathbb{Z}$ e.g.: $G = \mathbb{Z}/n\mathbb{Z}^*$

- 4 同 2 4 日 2 4 日 2 日 2 9 9 9 9

Discrete Logarithm Problem The Diffie-Hellman Problems

The Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP)

- Computing the function \log_g may be very easy... ...or very hard ...or very hard $G = \mathbb{Z}/n\mathbb{Z}$

(ロ) (同) (目) (日) (日) (0)

• an example : $G = \mathbb{Z}/23\mathbb{Z}^*$, g = 5. What's $\log_5 10$?

Discrete Logarithm Problem The Diffie-Hellman Problems

The Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP)

- Computing the function \log_a may be very easy... e.g.: $G = \mathbb{Z}/n\mathbb{Z}$
- ...or very hard

e.g.: $G = \mathbb{Z}/n\mathbb{Z}^*$

(ロ) (同) (目) (日) (日) (0)

• an example : $G = \mathbb{Z}/23\mathbb{Z}^*$, g = 5. What's $\log_5 10$? answer : 3, in fact $5^3 = 125 = 5 * 23 + 10$!

The Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP)

- Computing the function log_a may be very easy...
- ...or very hard

e.g.:
$$G = \mathbb{Z}/n\mathbb{Z}$$

e.g.: $G = \mathbb{Z}/n\mathbb{Z}^*$

• an example : $G = \mathbb{Z}/23\mathbb{Z}^*$, g = 5. What's log₅ 10 ? answer : 3, in fact $5^3 = 125 = 5 * 23 + 10$!

Algorithms

- The most efficient algorithms for a general group G are BSGS and Pollard's Rho. They both need $O(\sqrt{n})$ operations in the group
- Pohlig and Hellman improve this result by solving the DLP in the subgroups of G having prime order p s.t. p|n
- Thus we demand the order of G to be prime

The Discrete Logarithm Problem

The Discrete Logarithm Problem (DLP)

- Computing the function log_a may be very easy...
- ...or very hard

e.g.:
$$G = \mathbb{Z}/n\mathbb{Z}$$

e.g.: $G = \mathbb{Z}/n\mathbb{Z}^*$

• an example : $G = \mathbb{Z}/23\mathbb{Z}^*$, g = 5. What's log₅ 10 ? answer : 3, in fact $5^3 = 125 = 5 * 23 + 10$!

Algorithms

- The most efficient algorithms for a general group G are BSGS and Pollard's Rho. They both need $O(\sqrt{n})$ operations in the group
- Pohlig and Hellman improve this result by solving the DLP in the subgroups of G having prime order $p \ {\rm s.t.} \ p|n$
- $\bullet\,$ Thus we demand the order of G to be prime
- The most efficient algorithm for the group $\mathbb{Z}/n\mathbb{Z}^*$ is the Number Field Sieve. It needs $L_n(1/3)$ operations in the group

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

(ロ) (同) (E) (E) (E) (C)

A group G of prime order p. A generator g of G.

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

(ロ) (同) (E) (E) (E) (C)

A group G of prime order p. A generator g of G.

• chooses $a \in \mathbb{Z}/p\mathbb{Z}$ at random

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

(ロ) (同) (E) (E) (E) (C)

A group G of prime order p. A generator g of G.

- chooses $a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

A group G of prime order p. A generator g of G.

- chooses $a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

A group G of prime order p. A generator g of G.

- chooses $a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random

(ロ) (同) (目) (日) (日) (0)

 \bullet computes g^b

Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

A group G of prime order p. A generator g of G.

 g^a

- chooses $a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• computes g^b

Discrete Logarithm Problem The Diffie-Hellman Problems

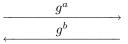
Diffie-Hellman key exchange

A group G of prime order p. A generator g of G.

- chooses $a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random

• computes g^b



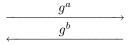
Discrete Logarithm Problem The Diffie-Hellman Problems

Diffie-Hellman key exchange

- A group G of prime order p. A generator g of G.
- $\bullet \mbox{ chooses } a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random

• computes g^b



• computes $K_{ab} = (g^b)^a$

Discrete Logarithm Problem The Diffie-Hellman Problems

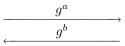
Diffie-Hellman key exchange

A group G of prime order p. A generator g of G.

$$\bullet \mbox{ chooses } a \in \mathbb{Z}/p\mathbb{Z}$$
 at random

• computes g^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random • computes g^b



• computes
$$K_{ab} = (g^b)^a$$

• computes
$$K_{ab} = \left(g^a\right)^b$$

(4月) (日) (日) (日) (1000)

Discrete Logarithm Problem The Diffie-Hellman Problems

The Diffie-Helman Problems

The security of the DH key exchange

- $\bullet\,$ An eavesdropper sees the values g^a and g^b
- It has to compute the value $K_{ab} = g^{ab}$
- The hardness of the computation is expressed via two problems believed to be difficult

Discrete Logarithm Problem The Diffie-Hellman Problems

The Diffie-Helman Problems

Decisional Diffie-Hellman Problem (DDH)

Given a group G, a generator g for G, three random elements g^a , g^b and g^c , distinguish with a non-negligible probability the triples

 (g^a,g^b,g^{ab}) and (g^a,g^b,g^c) .

Computational Diffie-Hellman Problem (CDH)

Given a group G, a generator g for G, two random elements g^a and g^b , compute g^{ab} .

(ロ) (同) (E) (E) (E) (C)

Discrete Logarithm Problem The Diffie-Hellman Problems

The Diffie-Helman Problems

Decisional Diffie-Hellman Problem (DDH)

Given a group G, a generator g for G, three random elements g^a , g^b and g^c , distinguish with a non-negligible probability the triples

 (g^a,g^b,g^{ab}) and (g^a,g^b,g^c) .

Computational Diffie-Hellman Problem (CDH)

Given a group G, a generator g for G, two random elements g^a and g^b , compute g^{ab} .

DLP and DH

- Clearly, if one can solve DLP, it can solve CDH and DDH as well
- The other direction is believed to be "almost true"

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Plan

- 1 Cryptography based on groups
 - Discrete Logarithm Problem
 - The Diffie-Hellman Problems

2 Elliptic curves

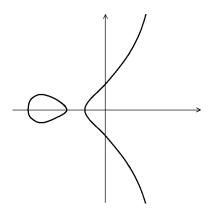
- The arithmetic of elliptic curves
- Elliptic Curve Discrete Logarithm Problem
- 3 Elliptic curve cryptography
 - ECDH
 - ECDSA
 - Summary
- 4 New perspectives in ECC
 - Pairings
 - Tripartite Diffie-Hellman
 - Identity Based Encryption

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves

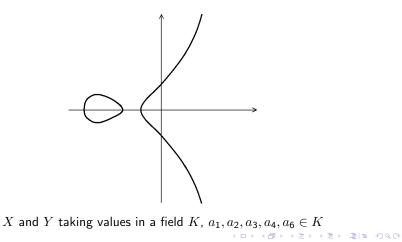
"An algebraic curve of genus 1"



The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves

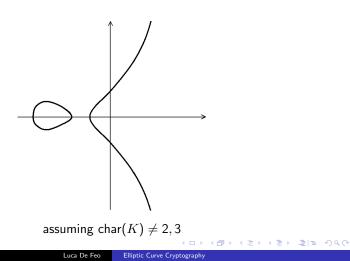
E :
$$Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$$



The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves





The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves

E :
$$Y^2 = X^3 + a_4 X + a_6$$

We define

- The discriminant $\Delta = -64a_4^3 1728a_6^2$
- The *j*-invariant $j(E) = -\frac{-1728(4a_4)^3}{\Delta}$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves

E :
$$Y^2 = X^3 + a_4 X + a_6$$

We define

- The discriminant $\Delta = -64a_4^3 1728a_6^2$
- The *j*-invariant $j(E) = -\frac{-1728(4a_4)^3}{\Delta}$

Isomorphic curves have the same j-invariant

(ロ) (同) (E) (E) (E) (C)

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves

E :
$$Y^2 = X^3 + a_4 X + a_6$$

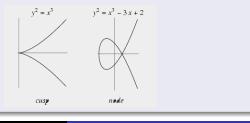
We define

- The discriminant $\Delta = -64a_4^3 1728a_6^2$
- The *j*-invariant $j(E) = -\frac{-1728(4a_4)^3}{\Delta}$

Isomorphic curves have the same j-invariant

We demand

• The curve to be *smooth* $\Leftrightarrow \Delta \neq 0$



The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

The group law (the jacobian in one slide !)

Divisors

- We can define a formal group Div(E) over the points of the curve E
- We work in the projective space $\mathbb{P}^2(K)$: we add a point at infinity \mathcal{O} .
- The point at infinity acts as a zero for the group

The group law (the jacobian in one slide !)

Divisors

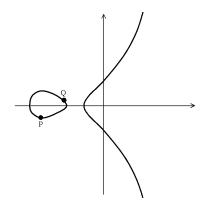
- We can define a formal group Div(E) over the points of the curve E
- We work in the projective space $\mathbb{P}^2(K)$: we add a point at infinity \mathcal{O} .
- The point at infinity acts as a zero for the group

The jacobian

- With "some algebra", we define the group $\operatorname{Jac}(E)$ as a quotient of $\operatorname{Div}(E)$
- Elements of Jac(E) are in one-to-one correspondence with the points of the curve, we note E(K) the set of (rational) points of E.
- It turns out that the operation of the jacobian has a simple geometric interpretation...

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Adding



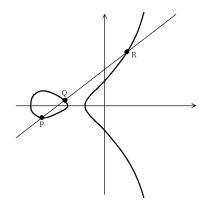
• $P = (x_0, y_0), Q = (x_1, y_1)$

$$\bullet \ -P = (x_0, -y_0)$$

• we assume
$$P \neq \pm Q$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Adding



• $P = (x_0, y_0), Q = (x_1, y_1)$

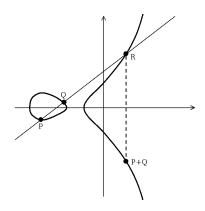
•
$$-P = (x_0, -y_0)$$

• we assume
$$P \neq \pm Q$$

• we set
$$\lambda = rac{y_1 - y_0}{x_1 - x_0}$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Adding



• $P = (x_0, y_0), Q = (x_1, y_1)$

•
$$-P = (x_0, -y_0)$$

- we assume $P \neq \pm Q$
- we set $\lambda = \frac{y_1 y_0}{x_1 x_0}$

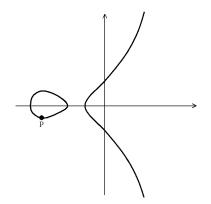
•
$$x_2 = \lambda^2 - x_0 - x_1$$

•
$$y_2 = (x_0 - x_2)\lambda - y_0$$

• $P + Q = (x_2, y_2)$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

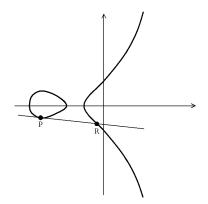
Doubling



- $P = (x_0, y_0)$
- we assume $y_0 \neq 0$ (otherwise [2]P = O)

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Doubling

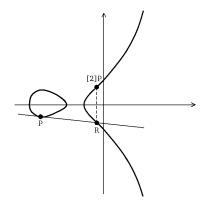


- $P = (x_0, y_0)$
- we assume $y_0 \neq 0$ (otherwise [2]P = O)

• we set
$$\lambda = rac{3x_0^2 + a_4}{2y_0}$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Doubling



- $P = (x_0, y_0)$
- we assume $y_0 \neq 0$ (otherwise [2]P = O)

• we set
$$\lambda = rac{3x_0^2 + a_4}{2y_0}$$

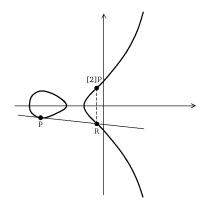
•
$$x_2 = \lambda^2 - x_0 - x_1$$

•
$$y_2 = (x_0 - x_2)\lambda - y_0$$

•
$$[2]P = (x_2, y_2)$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Doubling



- $P = (x_0, y_0)$
- we assume $y_0 \neq 0$ (otherwise [2]P = O)

• we set
$$\lambda = rac{3x_0^2 + a_4}{2y_0}$$

•
$$x_2 = \lambda^2 - x_0 - x_1$$

•
$$y_2 = (x_0 - x_2)\lambda - y_0$$

•
$$[2]P = (x_2, y_2)$$

• generalizing, we note $[m]P = \underbrace{P + P + \ldots + P}_{m \text{ times}}$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves over finite fields

Elliptic Curve DLP

• We have a group...

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves over finite fields

Elliptic Curve DLP

• We have a group... we want a hard DLP !

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves over finite fields

Elliptic Curve DLP

- We have a group... we want a hard DLP !
- Infinite groups are not suitable for cryptography since the logarithm is closely related with the size of the elements
- Curves over finite fields are the good choice

▲ @ ▶ ▲ ∃ ▶ ▲ ∃ ▶ 」目目 つくべ

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves over finite fields

Elliptic Curve DLP

- We have a group... we want a hard DLP !
- Infinite groups are not suitable for cryptography since the logarithm is closely related with the size of the elements
- Curves over finite fields are the good choice

Theorem (Hasse's theorem)

Let E be an elliptic curve defined over a field \mathbb{F}_q , then we have

$$|\#E(\mathbb{F}_q)-q-1|\leq 2\sqrt{q}.$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic curves over finite fields

Elliptic Curve DLP

- We have a group... we want a hard DLP !
- Infinite groups are not suitable for cryptography since the logarithm is closely related with the size of the elements
- Curves over finite fields are the good choice

Theorem (Hasse's theorem)

Let E be an elliptic curve defined over a field \mathbb{F}_q , then we have

$$|\#E(\mathbb{F}_q)-q-1|\leq 2\sqrt{q}.$$

Remarks

• There exist effective algorithms to calculate $\#E(F_q)$, see [BSS 1] and [BSS 2] for further readings.

< () > < () > <

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic group (G, *), a generator g of G of order n
- G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

$$\log_g\,:\,g^x\mapsto x$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic group (G, *), a generator g of G of order n
- G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

$$\log_g\,:\,g^x\mapsto x$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic subgroup Jac(E), a generator g of Jac(E) of order n
- G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

$$\log_g\,:\,g^x\mapsto x$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic subgroup Jac(E), a generator g of Jac(E) of order n
- G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

$$\log_g\,:\,g^x\mapsto x$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

$$\log_g\,:\,g^x\mapsto x$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- G is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

$$\log_g \,:\, g^x \mapsto x$$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- Jac(E) is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

 $\log_g\,:\,g^x\mapsto x$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- Jac(E) is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

 $\log_g\,:\, {\pmb g}^{\pmb x}\mapsto x$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

DLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- Jac(E) is isomorphic to Z/nZ via the bijection

 $\log_g \,:\, [x]P \mapsto x$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

• A cyclic subgroup Jac(E), a generator P of Jac(E) of order n

• Jac(E) is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

 $\log_g \ \colon \ [x]P \mapsto x$

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

ECDLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- Jac(E) is isomorphic to Z/nZ via the bijection

 $\log_g \ \colon \ [x]P \mapsto x$

Elliptic Curve Discrete Logarithm Problem

ECDLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- Jac(E) is isomorphic to Z/nZ via the bijection

 $\log_g \ \colon \ [x]P \mapsto x$

Hardness of ECDLP

ECDLP is easy for various classes of elliptic curves :

- n is not prime
- $n < 2^{160}$
- $n = \operatorname{char}(K)$
- $(\#K)^t = 1 \mod n$ for a t < 20
- $\#K = p^l$ with l not prime

 \rightarrow Pohlig-Hellman

 \rightarrow BSGS or Pollard's Rho

- \rightarrow anomalous attack (see [BSS 1])
 - \rightarrow MOV attack (see [BSS 1])
 - \rightarrow Weil descent (see [BSS 2])

The arithmetic of elliptic curves Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem

ECDLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- Jac(E) is isomorphic to Z/nZ via the bijection

 $\log_g \ \colon \ [x]P \mapsto x$

Hardness of ECDLP

• But for all the other cases no better algorithm is known than BSGS or Pollard's Rho !

Elliptic Curve Discrete Logarithm Problem

ECDLP

- A cyclic subgroup Jac(E), a generator P of Jac(E) of order n
- Jac(E) is isomorphic to $\mathbb{Z}/n\mathbb{Z}$ via the bijection

$$\log_g \ \colon \ [x]P \mapsto x$$

Hardness of ECDLP

- But for all the other cases no better algorithm is known than BSGS or Pollard's Rho !
- Thus, for crytpographic use, we select a random curve and verify that it's ECDLP is not easy

ECDH ECDSA Summary

Plan

- Cryptography based on groups
 - Discrete Logarithm Problem
 - The Diffie-Hellman Problems
- 2 Elliptic curves
 - The arithmetic of elliptic curves
 - Elliptic Curve Discrete Logarithm Problem
- 3 Elliptic curve cryptography
 - ECDH
 - ECDSA
 - Summary
- 4 New perspectives in ECC
 - Pairings
 - Tripartite Diffie-Hellman
 - Identity Based Encryption

▲□ → ▲ □ → ▲ □ → □ □ → ○ Q ()

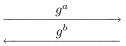
ECDH ECDSA Summary

Elliptic Curve Diffie-Hellman (ECDH)

A group G of prime order p. A generator g of G.

- $\bullet \mbox{ chooses } a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random • computes g^b



• computes
$$K_{ab} = (g^b)^a$$

• computes
$$K_{ab} = \left(g^a\right)^b$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ♪ りへへ

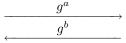
ECDH ECDSA Summary

Elliptic Curve Diffie-Hellman (ECDH)

A group G of prime order p. A generator g of G.

- $\bullet \mbox{ chooses } a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

- chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^b



• computes
$$K_{ab} = \left(g^b\right)^a$$

• computes
$$K_{ab} = (g^a)^b$$

(4月) (日) (日) (日) (1000)

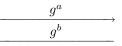
ECDH ECDSA Summary

Elliptic Curve Diffie-Hellman (ECDH)

An elliptic curve E, a finite field K, a subgroup of prime order p of E(K), a generator P.

- $\bullet \mbox{ chooses } a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes g^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random • computes g^b



• computes $K_{ab} = \left(g^b
ight)^a$

• computes
$$K_{ab} = \left(g^a
ight)^{l}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ♪ りへへ

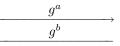
ECDH ECDSA Summary

Elliptic Curve Diffie-Hellman (ECDH)

An elliptic curve E, a finite field K, a subgroup of prime order p of E(K), a generator P.

• chooses
$$a \in \mathbb{Z}/p\mathbb{Z}$$
 at random
• computes q^a

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random • computes g^b



• computes
$$K_{ab}=\left(g^b
ight)^a$$

• computes
$$K_{ab} = \left(g^a
ight)^b$$

(日本)

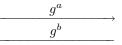
ECDH ECDSA Summary

Elliptic Curve Diffie-Hellman (ECDH)

An elliptic curve E, a finite field K, a subgroup of prime order p of E(K), a generator P.

- \bullet chooses $a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes [a]P

- chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes [b]P



• computes $K_{ab}=\left(g^b
ight)^a$

• computes
$$K_{ab} = \left(g^a\right)^b$$

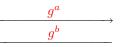
ECDH ECDSA Summary

Elliptic Curve Diffie-Hellman (ECDH)

An elliptic curve E, a finite field K, a subgroup of prime order p of E(K), a generator P.

- \bullet chooses $a \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes [a]P

- chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random
- computes [b]P



• computes $K_{ab} = \left(g^b
ight)^a$

• computes
$$K_{ab} = \left(g^a\right)^b$$

ECDH ECDSA Summary

Elliptic Curve Diffie-Hellman (ECDH)

An elliptic curve E, a finite field K, a subgroup of prime order p of E(K), a generator P.

chooses a ∈ Z/pZ at random
computes [a]P

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random

computes [b]P

• computes $K_{ab} = \left(g^b\right)^a$ • c

• computes
$$K_{ab} = (g^a)^b$$

ECDH ECDSA Summary

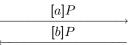
Elliptic Curve Diffie-Hellman (ECDH)

An elliptic curve E, a finite field K, a subgroup of prime order p of E(K), a generator P.

chooses a ∈ Z/pZ at random
computes [a]P

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random

computes [b]P



• computes $K_{ab} = \left(g^b\right)^a$

• computes
$$K_{ab} = \left(g^a\right)^b$$

ECDH ECDSA Summary

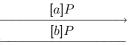
Elliptic Curve Diffie-Hellman (ECDH)

An elliptic curve E, a finite field K, a subgroup of prime order p of E(K), a generator P.

chooses a ∈ Z/pZ at random
computes [a]P

• chooses $b \in \mathbb{Z}/p\mathbb{Z}$ at random

computes [b]P



• computes $K_{ab} = [a]([b]P)$

• computes $K_{ab} = [b]([a]P)$

ECDH Problems

ECCDH and ECDDH

We define the problems computational ECDH and decisional ECDH the same way we did for CDH and DDH $\,$

(日本)

Elliptic Curve Digital Signature Algorithm (ECDSA)

Parameters

- A t-uple (E, K, n, P)
- A hash function $H : \{0,1\}^* \rightarrow \{0,1\}^l$
- A private key $x \in \mathbb{Z}/p\mathbb{Z}$ and a public key Y = [x]P

Elliptic Curve Digital Signature Algorithm (ECDSA)

Parameters

- A *t*-uple (*E*, *K*, *n*, *P*)
- A hash function $H: \{0,1\}^* \rightarrow \{0,1\}^l$
- A private key $x \in \mathbb{Z}/p\mathbb{Z}$ and a public key Y = [x]P

Signing a message m

- **1** Choose $k \in \mathbb{Z}/p\mathbb{Z}$ at random
- $T \leftarrow [k]P$
- $r \leftarrow x(T) \mod p$
- $e \leftarrow H(m)$

$$s \leftarrow \frac{e+xr}{k} \mod p$$

• Return (r, s)

Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA

Parameters

- A t-uple (E, K, n, P)
- A hash function $H : \{0,1\}^* \to \{0,1\}^l$
- A private key $x \in \mathbb{Z}/p\mathbb{Z}$ and a public key Y = [x]P

Signing a message m

- $\textbf{O} \ \mathsf{Choose} \ k \in \mathbb{Z}/p\mathbb{Z} \ \mathsf{at} \ \mathsf{random}$
- $T \leftarrow [k]P$
- 3 $r \leftarrow x(T) \mod p$
- $e \leftarrow H(m)$

$$s \leftarrow \frac{e+xr}{k} \mod p$$

• Return (r, s)

Verifying a signature (r, s)

$$\bullet \leftarrow H(m)$$

2
$$u \leftarrow \frac{e}{s}$$

$$v \leftarrow \frac{r}{s}$$

$$T \leftarrow [u]P + [v]Y$$

Accept if and only if r = x(T) mod p

Summary

Other protocols

- ECMQV authentified key agreement
- ECIES integrated encryption system

ECDH ECDSA Summary

Summary

Other protocols

- ECMQV authentified key agreement
- ECIES integrated encryption system

Security parameters

- DLP over finite fields requires nowadays 1024 bit keys to achieve a good security level (80 bits)
- For a comparable security level, ECDLP requires lesss than 200 bit keys
- The gain is given by the equation

$$n \approx N^{1/3}$$

where n is the number of bits required for an EC cryptosystem and N is the number of bits required for a conventional one

Pairings Fripartite Diffie-Hellman dentity Based Encryption

Plan

- Cryptography based on groups
 - Discrete Logarithm Problem
 - The Diffie-Hellman Problems
- 2 Elliptic curves
 - The arithmetic of elliptic curves
 - Elliptic Curve Discrete Logarithm Problem
- 3 Elliptic curve cryptography
 - ECDH
 - ECDSA
 - Summary

4 New perspectives in ECC

- Pairings
- Tripartite Diffie-Hellman
- Identity Based Encryption

▲冊▶ ▲∃▶ ▲∃▶ ∃|= ∽()

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Pairings

Definition (Pairing)

Given two groups $(G_1, +_1)$ and $(G_2, +_2)$ with same exponent n, given a cyclic group $(G_3, *)$ of order n, a pairing is a function

e : $G_1 \times G_2 \rightarrow G_3$

satisfying the following properties :

Bilinearity :

Non-degeneracy :

- for all P there is a Q such that $e(P,Q) \neq 1$
- for all Q there is a P such that $e(P,Q) \neq 1$

Pairings Tripartite Diffie-Hellman Identity Based Encryptior

Pairings

Definition (Self-pairing)

With the same notation as above, taking $G_1 = G_2$, we define a self-pairing as function

e : $G_1 \times G_1 \rightarrow G_3$

satisfying the following properties :

Bilinearity :

• e(P + P', Q) = e(P, Q)e(P', Q)• e(P, Q + Q') = e(P, Q)e(P, Q')Symmetry : e(P, Q) = e(Q, P) for all P and QNon-degeneracy : $e(P, P) \neq 1$ for all P

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Pairings

Pairings over elliptic curves

• Suppose G_1 and G_2 are groups of points of elliptic curves

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Pairings

Pairings over elliptic curves

- Suppose G_1 and G_2 are groups of points of elliptic curves
- Then pairings exist with G_3 a multiplicative subgroup of a finite field

Pairings Tripartite Diffie-Hellman Identity Based Encryptior

Pairings

Pairings over elliptic curves

- Suppose G_1 and G_2 are groups of points of elliptic curves
- Then pairings exist with G_3 a multiplicative subgroup of a finite field
- If G₁ is a subgroup of Jac(E) for a E(𝔽_q), then there exist a k ∈ ℕ (called the *embedding degree*) and a self-pairing s.t. G₃ is a multilpicative subgroup of 𝔽_{q^k}

Pairings Tripartite Diffie-Hellman Identity Based Encryptior

Pairings

Pairings over elliptic curves

- Suppose G_1 and G_2 are groups of points of elliptic curves
- Then pairings exist with G_3 a multiplicative subgroup of a finite field
- If G₁ is a subgroup of Jac(E) for a E(𝔽_q), then there exist a k ∈ ℕ (called the *embedding degree*) and a self-pairing s.t. G₃ is a multilpicative subgroup of 𝔽_{q^k}
- There exist classes of curves for which there is a pairing effectively computable, ECCDH is hard for the curve and DDH is hard for the finite field

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Tripartite Diffie-Hellman (3DH)

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Tripartite Diffie-Hellman (3DH)

G_1 sugroup of $E(\mathbb{F}_q),$ G_3 subgroup of $\mathbb{F}_{q^k},$ a self-pairing e, a generator P of G_1

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Tripartite Diffie-Hellman (3DH)

G_1 sugroup of $E(\mathbb{F}_q)$, G_3 subgroup of \mathbb{F}_{q^k} , a self-pairing e, a generator P of G_1

select a random a

• select a random b

• select a random \boldsymbol{c}

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Tripartite Diffie-Hellman (3DH)

G_1 sugroup of $E(\mathbb{F}_q),$ G_3 subgroup of $\mathbb{F}_{q^k},$ a self-pairing e, a generator P of G_1

- select a random a
- broadcast [a]P

- ${\ensuremath{\bullet}}$ select a random b
- broadcast [b]P

 ${\ensuremath{\bullet}}$ select a random c

broadcast [b]P

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Tripartite Diffie-Hellman (3DH)

 G_1 sugroup of $E(\mathbb{F}_q)$, G_3 subgroup of \mathbb{F}_{q^k} , a self-pairing e, a generator P of G_1

- select a random a
- broadcast [a]P
- $K_{abc} = e([b]P, [c]P)^a$

- ${\ensuremath{\bullet}}$ select a random b
- broadcast [b]P
- $K_{abc} = e([a]P, [c]P)^b$

- ${\small \bullet} \hspace{0.1 in} {\rm select} \hspace{0.1 in} {\rm a} \hspace{0.1 in} {\rm random} \hspace{0.1 in} c$
- broadcast [b]P
- $K_{abc} = e([a]P, [b]P)^c$

(ロ) (同) (目) (日) (日) (0)

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Tripartite Diffie-Hellman (3DH)

 G_1 sugroup of $E(\mathbb{F}_q)$, G_3 subgroup of \mathbb{F}_{q^k} , a self-pairing e, a generator P of G_1

- select a random a
- broadcast [a]P
- $K_{abc} = e([b]P, [c]P)^a$

- ${\ensuremath{\bullet}}$ select a random b
- broadcast [b]P
- $K_{abc} = e([a]P, [c]P)^b$

 $K_{abc} = e(P, P)^{abc}$

- ${\small \bullet}$ select a random c
- broadcast [b]P
- $K_{abc} = e([a]P, [b]P)^c$

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Non-Interactive Key Distribution

Trusted Authority

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Non-Interactive Key Distribution

Trusted Authority

(ロ) (同) (E) (E) (E) (C)

A *t*-uple (G_1, G_3, e, P) , a hash function $H : \Sigma^* \to G_1$

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Non-Interactive Key Distribution

Trusted Authority

A *t*-uple (G_1, G_3, e, P) , a hash function $H : \Sigma^* \to G_1$

• has a master secret s

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Non-Interactive Key Distribution

Trusted Authority

A *t*-uple (G_1, G_3, e, P) , a hash function $H : \Sigma^* \to G_1$

• has a public ID $Q_A = H(Alice)$ • has a public ID $Q_B = H(\mathsf{Bob})$

• has a master secret s

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Non-Interactive Key Distribution

Trusted Authority

A *t*-uple (G_1, G_3, e, P) , a hash function $H : \Sigma^* \to G_1$

• has a public ID $Q_A = H(Alice)$ has a public ID
 Q_B = H(Bob)

- has a master secret s
- gives $S_A = [s]Q_A$ to Alice over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Non-Interactive Key Distribution

Trusted Authority

A *t*-uple (G_1, G_3, e, P) , a hash function $H : \Sigma^* \to G_1$

• has a public ID $Q_A = H(Alice)$ has a public ID
 Q_B = H(Bob)

- has a master secret s
- gives $S_A = [s]Q_A$ to Alice over a private channel
- gives $S_B = [s]Q_B$ to Bob over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Non-Interactive Key Distribution

Trusted Authority

A *t*-uple (G_1, G_3, e, P) , a hash function $H : \Sigma^* \to G_1$

• has a public ID $Q_A = H(Alice)$

• has a public ID $Q_B = H(Bob)$

• $K_{AB} = e(S_A, Q_B)$

• $K_{AB} = e(Q_A, S_B)$

- has a master secret s
- gives $S_A = [s]Q_A$ to Alice over a private channel
- gives $S_B = [s]Q_B$ to Bob over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Non-Interactive Key Distribution

Trusted Authority

A *t*-uple (G_1, G_3, e, P) , a hash function $H : \Sigma^* \to G_1$

• has a public ID $Q_A = H(Alice)$

• has a public ID $Q_B = H(Bob)$

• $K_{AB} = e(S_A, Q_B)$

• $K_{AB} = e(Q_A, S_B)$

 $K_{AB} = (Q_A, Q_B)^s$

- has a master secret s
- gives $S_A = [s]Q_A$ to Alice over a private channel
- gives $S_B = [s]Q_B$ to Bob over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

(G_1,G_3,e,P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0,1\}^n$

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

 (G_1,G_3,e,P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0,1\}^n$

• has a public ID $Q_A = H(Alice)$

- has a master secret s
- has a public key
 Q₀ = [s]P

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

 (G_1,G_3,e,P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0,1\}^n$

• has a public ID $Q_A = H(Alice)$

- has a master secret s
- has a public key $Q_0 = [s]P$
- gives $S_A = [s]Q_A$ to Alice over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

 (G_1, G_3, e, P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0, 1\}^n$

has a public ID
 Q_A = H(Alice)

a message M

- has a master secret s
- has a public key $Q_0 = [s]P$
- gives $S_A = [s]Q_A$ to Alice over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

 (G_1,G_3,e,P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0,1\}^n$

has a public ID
 Q_A = H(Alice)

- a message M
- select a random t

- has a master secret s
- has a public key $Q_0 = [s]P$
- gives $S_A = [s]Q_A$ to Alice over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

 (G_1, G_3, e, P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0, 1\}^n$

has a public ID
 Q_A = H(Alice)

- $\bullet \ {\rm a} \ {\rm message} \ M$
- select a random t

• U = [t]P

- has a master secret s
- has a public key $Q_0 = [s]P$
- gives $S_A = [s]Q_A$ to Alice over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

 (G_1, G_3, e, P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0, 1\}^n$

has a public ID
 Q_A = H(Alice)

- $\bullet \ {\rm a} \ {\rm message} \ M$
- select a random t

•
$$U = [t]P$$

• V = $M \oplus H_2(e(Q_A, Q_0)^t)$

- has a master secret s
- has a public key $Q_0 = [s]P$
- gives $S_A = [s]Q_A$ to Alice over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

 (G_1,G_3,e,P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0,1\}^n$

• has a public ID $Q_A = H(Alice)$

- ${\ensuremath{\bullet}}$ a message M
- select a random t

•
$$U = [t]P$$

(U,V)

• V = $M \oplus H_2(e(Q_A, Q_0)^t)$

- has a master secret s
- has a public key $Q_0 = [s]P$
- gives $S_A = [s]Q_A$ to Alice over a private channel

Pairings Tripartite Diffie-Hellman Identity Based Encryption

Identity Based Encryption

Trusted Authority

 (G_1,G_3,e,P) , hash functions H_1 : $\Sigma^* \to G_1$ and H_2 : $G_3 \to \{0,1\}^n$

• has a public ID $Q_A = H(Alice)$

- $\bullet \ {\rm a} \ {\rm message} \ M$
- select a random t

•
$$U = [t]P$$

(U,V)

• V = $M \oplus H_2(e(Q_A, Q_0)^t)$

- has a master secret s
- has a public key $Q_0 = [s]P$
- gives $S_A = [s]Q_A$ to Alice over a private channel

• $M = V \oplus H_2(e(S_A, U))$

Bibliography I

🍆 J.H. Silverman

The Arithmetic of Elliptic Curves GTM 106, Springer-Verlag, 1986

🛸 I. Blake. G. Seroussi & N. Smart Elliptic Curves in Cryptography LMS 265, Cambridge University Press, 1999

📎 (edited by) I. Blake, G. Seroussi & N. Smart Advances in Elliptic Curve Cryptography LMS 317, Cambridge University Press, 2005

⇒ ↓ ≡ ↓ ≡ |= √QQ